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Recent experiments have demonstrated quantum manipulation of two-electron spin states in double quantum
dots using electrically controlled exchange interactions. Here we present a detailed theory for electron-spin
dynamics in two-electron double-dot systems that was used to guide those experiments and analyze the results.
Specifically, we analyze both spin- and charge-relaxation and dephasing mechanisms that are relevant to
experiments and discuss practical approaches for quantum control of two-electron systems. We show that both
charge and spin dephasing play important roles in the dynamics of the two-spin system, but neither represents
a fundamental limit for electrical control of spin degrees of freedom in semiconductor quantum bits.
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I. INTRODUCTION

Electron spins in quantum dots represent a promising sys-
tem for studying mesoscopic physics, developing elements
for spintronics,1,2 and creating building blocks for quantum
information processing.3–6 In the field of quantum informa-
tion, confined electron spins in quantum dots are promising
candidates for quantum bits due to their potential for long
coherence times.7–9 However, the deleterious effects of hy-
perfine coupling to lattice nuclear spins,10–18 as found in
experiments,19–23 can severely limit the phase coherence of
electron spins. Therefore, it is important to understand the
dynamics of electron spins coupled to nuclei and to develop
corresponding quantum control techniques to mitigate this
coupling.

Recent experiments by our group explored coherent spin
manipulation of electron spins to observe and suppress the
hyperfine interaction.20,21,24 In this paper, we present a de-
tailed theory describing coherent properties of coupled elec-
trons in double quantum dots that was used to guide those
experiments and analyze the results. The theory includes hy-
perfine interactions, external magnetic field, exchange terms,
and charge interactions.

Our approach relies on an approximation based on the
separation of time scales between electron-spin dynamics
and nuclear-spin dynamics. In particular, the time scales gov-
erning nuclear-spin evolution are slower than most relevant
electron-spin processes. This allows us to treat the nuclear
environment using a type of adiabatic approximation, the
quasistatic approximation �QSA�.11,16 In this model, the
nuclear configuration is fixed over electron-spin precession
times but changes randomly on the time scale over which
data points in an experiment might be averaged �current ex-
periments acquire a single data point on �100 ms time
scales�. We also consider the first corrections to this approxi-
mation, where experimentally relevant.

In what follows, we start by reviewing the theory of hy-
perfine interactions in single and double quantum dots, fo-
cusing on electrostatic control of electron-spin–electron-spin
interactions. We then consider the role of charge dephasing

and charge-based decay in experiments involving the so-
called spin blockade, in which a simultaneous spin flip and
charge transition is required for electrons to tunnel from one
dot to another.20 Consistent with the experiments, we find
that blockade is reduced near zero magnetic field over a
range set by the average magnitude of the random Over-
hauser �nuclear� field. We then consider the effect of fast
control of the local electrostatic potentials of double quan-
tum dots and show how this may be used to perform ex-
change gates,3,10,25 and to prepare and measure two-spin en-
tangled states.21,26 Various limitations to the preparation,
manipulation, and measurement techniques, due to nuclear
spins, phonons, and classical noise sources, are considered.

Theories that explicitly include quantum-mechanical state
and evolution effects of the nuclear spins both within and
beyond the QSA have been considered by several authors
�Refs. 10, 12, 15, 17, 18, and 27–29�. Dephasing, decoher-
ence, and gating error in double quantum dots have also been
investigated previously;27,30,31 the present work develops the
theory behind quantum control techniques used in experi-
ments, connecting the previous general theoretical treatments
to specific experimental observations. The paper is organized
as follows. Interactions of a single electron in a single quan-
tum dot, including hyperfine terms, are reviewed in Sec. I.
The quasistatic regime is defined and investigated, and
dephasing of electron spins by hyperfine interactions in the
quasistatic regime is detailed. This provides a basis for ex-
tending the results to double quantum dot systems. We then
develop a theory describing the two-electron spin states of a
double quantum dot including the response of the system to
changes in external gate voltages and the role of inelastic
charge transitions.32–34 This is combined with the theory of
spin interactions in a single dot to produce a theory describ-
ing the dynamics of the low-energy states, including spin
terms, of the double-dot system in two experimental regimes.
One is near the charge transition between the two dots,
where the charge state of two electrons in one dot is nearly
degenerate with the state with one electron in each dot. The
other is the far-detuned regime, where the two dots are bal-
anced such that the states with two electrons in either dot are
much higher in energy.
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In the remaining sections, we investigate situations related
to the experiments. First, we consider spin blockade near the
charge transition, as investigated in Ref. 20, considering ef-
fects due to difference in dot sizes and expanding upon sev-
eral earlier informal ideas. We then analyze approaches in
probing dephasing and exchange interactions, showing how
errors affect fast gate control approaches for preparation and
measurement of two-electron spin states, as well as con-
trolled exchange interactions and probing of nuclear-spin-
related dephasing, as investigated in Ref. 21. Finally, we
consider limitations to exchange gates and quantum memory
of logical qubits encoded in double-dot systems.5,26

II. HYPERFINE INTERACTIONS IN A DOUBLE
QUANTUM DOT: A REVIEW

We begin by reviewing the basic physics of hyperfine
interactions for electron spins in single GaAs quantum dots.
This section reviews the established theory for single quan-
tum dots11,12,16,35 and considers dynamical corrections to the
model of Refs. 11 and 16. This model will be used in subse-
quent sections for the double-dot case. Additional terms,
such as spin-orbit coupling, are neglected. Theory7–9 and
experiment20,36,37 have demonstrated that spin-orbit related
terms lead to dephasing and relaxation on time scales of
milliseconds, whereas we will focus on interaction times on
the order of nanoseconds to microseconds.

A. Electron-spin Hamiltonian for a single quantum dot

The Hamiltonian for the Kramer’s doublet of the ground
orbital state of the quantum dot �denoted by the spin-1 /2

vector S�̂� �Fig. 1� including hyperfine contact interactions

with lattice nuclei �spins I�̂�,j� is11,38

H = ��eB� ext · S�̂ + ��e�
�,j

b�� j,�S�̂ · I�̂�,j , �1�

where �e=g*�B /� is the gyromagnetic ratio for electron spin

S�̂; sums are over nuclear species ��� and unit cells �j�. Cor-
respondingly, b� is the effective hyperfine field due to
species � within a unit cell, with b75As

=−1.84 T, b69Ga
=−1.52 T, and b71Ga

=−1.95 T for GaAs.38 The coefficient
� j,�=v0���r� j,���2 is the probability of the electron being at
unit cell j �with nuclear spin species ��, v0 is the volume of
the unit cell �two nuclei�, and ��r� is the envelope wave
function of the localized electron.

It is convenient to rewrite the Hamiltonian using a collec-

tive operator for the nuclear spins, B�̂ nuc=��b�� j� j,�I�̂�,j. This
operator allows us to write the Hamiltonian as an electron

spin interacting with an external magnetic field B� ext and an

intrinsic field B�̂ nuc �Fig. 1�c��:

Heff = ��e�B� ext + B�̂ nuc� · S�̂ . �2�

Several characteristic values11,38 for this interaction are noted
in Table I. The maximum nuclear field value �all spins fully
polarized with value I=3/2� is h0=��b��x�I���k�k, where
we have separated out the relative population of nuclear spe-
cies, x75As

=1, x69Ga
=0.6, and x71Ga

=0.4 for GaAs, removing
the � dependence from the �k,�. This gives b0=5.3 T. Sec-
ond, when the nuclear spins may be described by a density

matrix �=1̂ / �2I+1�N �infinite temperature approximation for
N nuclei�, the root-mean-square �rms� strength of the field59

is

Bnuc =���B�̂ nuc�2�
3

=��
�,k

b�
2�k,�

2 ��I�̂�,k�2�
3

�3�

=�	�
�

x�b�
2
 I�I + 1�v0

3
� d3r���r��4 �4�

=h1/�N , �5�

where we have replaced � jv0 with �d3r. The characteristic
strength parameter is h1=�2I�I+1� /3���x�b�

2 =4.0 T for
GaAs, and N is defined as the number of nuclei with which
the electron has significant overlap, i.e., N
=2/ �d3r���r��4v0�. These numerical values are specific for
GaAs quantum dots. Dots in other materials with nonzero
nuclear spin may be described by similar parameters: a maxi-
mum field strength parameter h0 and a rms field strength
parameter Bnuc=h1 /�N.

B. Quasistatic approximation for nuclear spins

By writing the Hamiltonian Eq. �2�� with nuclei as an
effective magnetic field, we have implicitly indicated that the
field may be considered on a similar footing to the external

magnetic field. In other words, the operator B�̂ nuc may be

FIG. 1. �Color online� �a� A schematic potential and energy-
level diagram for a single quantum dot in which one electron is
confined to the low-energy spectrum of a three-dimensional poten-
tial. Only the ground and first excited states, each a Kramer’s dou-
blet, are shown. �b� The lowest orbital state has a spin-1 /2 electron
interacting with the lattice nuclear spins. �c� Effective magnetic
field due to both external field and the nuclear field. When the
external field is large, the transverse components of the nuclear field
are neglected in a rotating wave approximation.
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replaced by a random, classical vector B� nuc, and observables
may be calculated by averaging over the distribution of clas-
sical values. The distribution in the large N limit is

P�B� � =
1

�2�Bnuc
2 �3/2 exp„− �B� · B� �/2Bnuc

2
… . �6�

This is the quasistatic approximation60 �QSA� used in Refs.
11 and 16: we assume that over time scales corresponding to
electron-spin evolution, the nuclear terms do not vary.

In terms of dephasing, we cite the results of Ref. 11. At
zero external magnetic field in the Heisenberg picture, the

electron spin S�̂ evolves to

�S�̂�t��nuc =
S�̂�0�

3
�1 + 21 − ��eBnuct�2�e−��eBnuct�2

� . �7�

On the other hand, at large external magnetic fields, Ŝz is

conserved, but transverse spin components �e.g., Ŝx� decay as

�Ŝx�nuc =
Ŝx

2
1 + e−�1/2���eBnuct�2

� . �8�

A time-ensemble-averaged dephasing time due to nuclei in a
single dot at large external magnetic field �e.g., dot i� is

T2,i
* =

1

�eBnuc,i
. �9�

This definition is appropriate when considering the decay of
coherence of a single electron in a single quantum dot.

Generalizing to all field values, for times longer than T2
*,

S�̂�t	 T2
*� = �S�̂�t = 0� · n��n��nuc �10�

is the average electron-spin value, averaged over a time 

=2� /�.

At low magnetic fields, the QSA is valid up to the single
electron-spin–nuclear-spin interaction time O��N /A��,
which is of order of microseconds.11 In contrast, at large
external fields, the regime of validity for the QSA is ex-
tended. Terms noncommuting with the Zeeman interaction
may be eliminated �secular approximation or rotating wave
approximation�, yielding an effective Hamiltonian

Heff = ��e�Bext + Bnuc
ẑ �Ŝz. �11�

The z axis is set to be parallel to the external magnetic field.
Corrections to the QSA have a simple interpretation in the
large field limit. As the Zeeman energy suppresses spin-flip
processes, we can create an effective Hamiltonian expanded
in powers of 1 /Bext using a Schrieffer-Wolf transformation.
In the interaction picture, we write the corrections to Heff by

setting Bnuc
ẑ =Bz+�B̂z�t�, where Bz is the QSA term and �B̂z�t�

are fluctuations beyond the QSA. When the number of nuclei

N is large and fluctuations small, we approximate �B̂z by its
Fourier-transformed correlation function:

��B̂z�t + 
��B̂z�t�� =� d� S���ei�
, �12�

where S��� has a high-frequency cutoff ��eBnuc. The form
of S��� depends on the detailed parameters of the nuclear-
spin Hamiltonian and the nuclear-spin–nuclear-spin interac-
tions and, in general, requires a many-body treatment. A va-

TABLE I. Time, energy, and magnetic field scales for electron and nuclear spins in single and double quantum dots, from fast to slow.

Type Time Energy Magnetic field Typical value

Charge

Charging energy Ec 5 meV

Orbital level spacing ��0 1 meV

Single-dot two-electron exchange near Bext=0 J 300 �eV

Double-dot tunnel coupling Tc 10 �eV

Double-dot inelastic tunneling ���� 0.01–100 neV

Electron spin

Larmor precession tL ��eBext Bext 0–200 �eV

Fully polarized Overhauser shift AI h0 130 �eV

�Random� Overhauser shift T2
* ��eBnuc Bnuc=

h1

�N

0.1–1 �eV

Nuclear-spin species �

Larmor precession tnL,� ���Bext Bext 0–100 neV

Knight shift tK,� ��eBnuc��,j �
��eBnuc

�N

�eBnuc

���N

0.1–10 neV

Dipole-dipole interaction �nearest neighbor� tdd �����2

v0

���
v0

0.01 neV
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riety of approaches have been used to successfully estimate
these corrections.17,18,27–29,39 Any approach with an expan-
sion in inverse powers of the external field is compatible
with our assumption of S���, provided that the number of
nuclear spins is sufficiently large that Gaussian statistics may
emerge. In contrast, the validity of the QSA in the low-field
regime remains unproven, though recent simulations40 sug-
gest it may break down before ��N /A times scales.

C. Hyperfine interactions in a double quantum dot

We consider standard extensions to the single electron
theoretical model to describe the case of two electrons in
adjacent, coupled quantum dots by considering only charge-
related couplings and then including spin couplings. The rel-
evant states are separated electron states, in which one elec-
tron is in each quantum dot, and doubly occupied states, with
two electrons in one of the two dots.

The doubly occupied states are assumed to be singlets
�appropriate for small perpendicular magnetic field�.10 The
higher excited states that are doubly occupied are triplets
with a large energy gap J. This singlet-triplet energy gap
for doubly occupied states facilitates elimination of the
spin interactions and the doubly occupied triplet states.
Furthermore, by controlling the relative potential � of the

two quantum dots using electrostatic potentials applied
by external gates, the ground state can be changed from
one of the doubly occupied states to one of the separated
electron states �far-detuned regime on the other side of
the charge transition�.41 Electrostatic control of the
double-dot Hamiltonian will be analyzed in more detail in
Secs. II–IV.

Formally, we eliminate all but one of the doubly occupied
states following the prescription of Ref. 27. We include the
doubly occupied state �0,2�S, where �nl ,nr� denotes the
number of electrons in left and right dots, respectively, and
S denotes a singlet of electron spin, in addition to the
singlet and triplet manifolds of the �1,1� subspace. For nota-
tional convenience, we set �=0 to occur at the avoided cross-
ing between �1,1� and �0,2� in Fig. 2. There is an avoided
crossing at �=0 for the spin-singlet manifold due to
quantum-mechanical tunneling Tc between the two quantum
dots, while the spin-triplet manifold is unaffected. The
Hamiltonian for the states ��0,2�S�, ��1,1�S� can be written
as

H11−02 = 	− � Tc

Tc
* 0


 . �13�

ε
Charge

state:

|Τ+〉

|Τ−〉Energy

levels |Τ0〉
|S〉

|(0,2)S〉

J

2Tc 2Tc

Ec

(c)

(2,0)
(1,1)

(0,2)

(1,0) (0,1)

(0,0)

(2,1) (1,2)

ε

(a)

(b)

ε

|(0,2)T〉

|(2,0)S〉

|(2,0)T〉

|(0,2)S〉

|S〉|Τm〉,
|S〉|Τm〉,

|(0,2)T〉
|(0,2)S〉|(2,0)S〉

J

FIG. 2. �Color online� �a�
Charge stability diagram for a
double-dot system. Double-dot
occupation is denoted by �nl ,nr�.
The detuning is parametrized by
�, and the far-detuned regime
�light blue� and charge transition
�yellow� are shown. �b� Schematic
of the double-well potentials
along one axis �x� with tight con-
finement in the other two axes
�i.e., y and z�. In the far-detuned
regime, the �1,1� charge states are
the ground state, while in the
charge transition regime, �0,2� can
be the ground state. Triplet states
are indicated in red, while electron
charges are indicated in orange.
�c� Energy-level structure of the
double-dot system as a function of
detuning. From left to right, the
lowest-energy charge state as a
function of � is �2,0�, �1,1�, and
�0,2�. The detuning at the middle
of the graph corresponds to �=
−Ec /2, where Ec is the charging
energy of a single dot. The three
�1,1� triplet states �shown in red�
are split by Zeeman energy.
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As the tunneling coefficient and external magnetic field are
assumed constant, we will choose Tc to be real by an appro-
priate choice of gauge.

For a slowly varying or time-independent Hamiltonian,
the eigenstates of Eq. �13� are given by

�S̃� = cos ��S� + sin ���0,2�S� , �14�

�G̃� = − sin ��S� + cos ���0,2�S� . �15�

We introduce the tilde states as the adiabatic states, with �G̃�
the higher-energy state. The adiabatic angle is �

=arctan� 2Tc

�−�4�Tc�2+�2�, and the energies of the two states are

ES̃ = −
Tc

2
tan��� , �16�

EG̃ =
Tc

2
tan	�

2
− �
 . �17�

When �−�Tc�, �→0, the eigenstates become �S̃�→ �S�,
�G̃�→ ��0,2�S�. For �	 �Tc�, �→� /2, and the eigenstates are

switched, with �S̃�→ ��0,2�S� and �G̃�→ �S�. As will be dis-
cussed later, controllably changing � allows for adiabatic
passage between the near degenerate spin states �S�, �Tm�
�far-detuned regime� to past the charge transition, with

��0,2�S� as the ground state ��	 �Tc��. This adiabatic passage
can be used for singlet generation, singlet detection, and
implementation of exchange gates.21

We now add spin couplings to the double-dot system, in-
cluding both Zeeman interactions and hyperfine contact cou-
pling. Two effective Hamiltonians, one for �−�Tc� and one
for ��0, are developed. Our approach is similar to that of
Ref. 27, and we include it here for completeness. The spin

interactions in a double quantum dot for the states �Tm�, �S̃�
may be written for �−�Tc� as

Hhf,tot = Hhf,eff
l + Hhf,eff

r − J����S��S� , �18�

where l and r refer to left and right dots, respectively, the
nuclear fields are determined by the ground orbital state en-
velope wave functions of the single-dot Hamiltonians �see
Fig. 3� and J���=−ES̃���.

Reordering terms simplifies the expression:

Hhf,tot = ��eB� · �Sl�̂ + Sr�̂ � + dB� · �Sl�̂ − Sr�̂ �� − J����S��S� ,
�19�

with an average field B� =B� ext+
B� nuc,l+B� nuc,r

2 and difference field

dB� = �B� nuc,l−B� nuc,r� /2. The form of Eq. �19� indicates that

terms with B� and J��� are diagonal in total spin and spin

projection along B� , creating a natural set of singlet and triplet

states. However, the term with dB� breaks the total spin sym-
metry and couples the singlet to the triplet states.

We can now write Eq. �19� in matrix form in the basis
��T+� , �T0� , �T−� , �S��,

H = ��e�
Bz 0 0

dBx − idBy

�2

0 0 0 − dBz

0 0 − Bz

− dBx − idBy

�2

dBx + idBy

�2
− dBz

− dBx + idBy

�2
− J���/�e

� . �20�

FIG. 3. �Color online� A double quantum dot in the �1,1� con-
figuration. �a� Schematic of the two-electron wave function in the
far-detuned regime interacting with lattice nuclear spins. �b� Elec-
tron spins in the left and right dots interacting with their respective
effective nuclear fields in the quasistatic approximation.

|Τ+〉

|Τ−〉

|Τ0〉
|S〉

|Τ+〉

|Τ−〉

|Τ0〉

|S〉

|G〉

Γ(ε)

~

~(a) (b)

Unbiased Biased

Bz

Bz
J

dB+

dB-

dBz

Bz+Es

dB- cosθ

FIG. 4. �Color online� �a� Levels in the far-detuned regime,
including all couplings of Eq. �20�. �b� Levels near the charge tran-

sition; the �T+�↔ �S̃� is near resonance, with the coupling between

�T+� and �S̃� indicated, as per Eq. �22�.
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The corresponding level structure is given in Fig. 4�a�. We
have implicitly assumed the QSA in writing this Hamiltonian

by defining the axis of spins up and down as B� , which is a
sum of the external field and the average nuclear field. If the
nuclear field fluctuates, those terms can contribute by cou-
pling different triplet states together.

With no external magnetic field, all states couple to the
singlet, and solving the dynamics requires diagonalizing the
4�4 matrix of Eq. �20�. However, at finite magnetic field, a
large Zeeman splitting �which sets Bz	Bnuc� allows us to
separate the system. The far-detuned regime only has transi-
tions between the ms=0 states; in this basis ���T0� , �S���, the
matrix becomes

Hms=0 = ��e	 0 − dBz

− dBz − J���/�e

 . �21�

This two-level system has appropriately straightforward dy-
namics, and we investigate it in some detail below.

Near the charge transition and at finite magnetic field,

another coupling can occur, this time between �T+� and �S̃�.
This resonance corresponds to the adiabatic singlet �S̃� hav-
ing an exchange energy J��� close to the Zeeman-split trip-
let’s Zeeman energy Ez=��eBz. We note that external mag-
netic field for GaAs will be negative in this context �due to
the negative electron g factor=−0.44�. Written in the basis

��T+� , �S̃��, the Hamiltonian is

Hflip-flop = ��e� Bz

dBx − idBy

�2
cos �

dBx + idBy

�2
cos � − J���/�e

� .

�22�

We have subscripted Eq. �22� with “flip-flop” indicating that

flips between �S̃� and �T+� result in the flipping of a nuclear
spin, which can be seen by identifying dB+=dBx+ idBy

= �B̂nuc,l,+− B̂nuc,r,+� /2.

Because the S̃−T+ resonance leads to spin flips and even-
tual polarization of the nuclear field, the QSA will not be
valid if appreciable change of field occurs, and the overall
dynamics may go beyond the approximation. This has been
examined experimentally22,42 and theoretically43–45 for some
specific cases. While the discussion to follow mentions this
resonance, it will focus on the zero-field mixing of Eq. �19�
and the far-detuned regime’s finite-field mixing of Eq. �21�.
We remark that Eqs. �21� and �22� have been previously
derived outside of the QSA.27

We have now established that in the far-detuned regime,
the relevant spin interactions are limited to dynamics within
the singlet-triplet subspace and determined by the Hamil-
tonian in Eq. �21�. Similarly, near the charge transition, a
resonance between �S� and �T+� may be observed; as this
resonance allows for nuclear-spin polarization, it may only
be partially described by the QSA, and we do not consider its
dynamics in detail. However, we note that in the absence of
nuclear-spin polarization, the resonance occurs when the

Zeeman splitting of the external field equals the exchange
energy J���. Thus, if the Zeeman energy is known, measur-
ing the position of the splitting gives a map between external
parameters and the actual exchange energy.

III. NUCLEAR-SPIN-MEDIATED RELAXATION IN
DOUBLE DOTS

In this section, we consider the case in which the ground
state of the system is ��0,2�S� and the low-lying excited
states are the �1,1� states ��S� , �Tm��. This situation occurs in
dc transport when the system is in the spin blockade regime,
where transitions from �Tm� to ��0,2�S� are suppressed be-
cause they require both a spin and charge transition. Previous
theoretical work for two-electron systems has focused on
triplet and singlet decays of two-electron states in a single
quantum dot;46 in contrast, the present analysis deals with a
double quantum dot system where the electrons can be well
separated. Contrary to more general spin blockade
calculations47 and experiments, the present work is focused
entirely on the rate limiting step of blockade: the spin flip
followed by charge transition within the double quantum dot.
Several groups36,37,48 have studied spin relaxation between
Zeeman-split spin states at high magnetic field �B�4 T�.
The measured relaxation rates were found to scale as B5,
consistent with a spin-orbit mediated spin-relaxation
process.7 Similarly, single-dot measurements of triplet-
singlet relaxation when J	�eBnuc �i.e., when the effect of
nuclei is small� indicate long lifetimes, likely limited by
similar spin-orbit mediated mechanisms or cotunneling to the
leads.33,49 On the other hand, at low field and small ex-
change, when the splitting between spin states becomes com-
parable to Bnuc, the hyperfine interaction dramatically in-
creases the spin-relaxation rate. Recent experiments have
measured spin relaxation between nearly degenerate singlet
and triplet spin states in this regime.20,50 Experimental tech-
niques are discussed in Ref. 51, and a full analysis of the
field and energy dependences of the relaxation rate is dis-
cussed in Ref. 20. We only briefly outline the salient features
of experiment, focusing instead on developing a more rigor-
ous basis for the theory of a previous published work.

Experiments are performed near the two-electron regime
with very weak tunnel coupling so that Tc is slower than the
pulse rise times �Tc1 �eV�. Pulsed-gate techniques are
used to change the charge occupancy from �0,1� to �1,1� to
�0,2� and back to �0,1�. In the �1,1� charge configuration with
weak interdot tunnel coupling, the �S� and �Tm� states are
nearly degenerate. Shifting the gates from �0,1� to �1,1� cre-
ates a mixture of all four states �S� , �Tm=−1,0,1� by loading an
electron from a nearby Fermi sea. Then, the system is rapidly
�nonadiabatic with respect to tunnel coupling Tc� shifted to
the �0,2� regime, with ��0,2�S� as the ground state. In this
rapid shift procedure, the singlet �S� does not adiabatically
follow to the doubly occupied singlet ��0,2�S� but instead
follows the Zener branch of the avoided crossing and stays in
�S�, as is illustrated in Fig. 5.

Past the charge transition, when the adiabatic basis

�S̃� , �G̃� is an appropriate representation of the system, it is
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possible for the system to experience inelastic decay from

the excited state �G̃� to the ground state �S̃� via charge cou-
pling, e.g., to phonons. The energy gap for �	 �Tc� is EG̃

−ES̃=��2+4�Tc�2��. Inelastic decay near a charge transition
in a double quantum dot has been investigated in great
detail,32,34,52 and we do not seek to reproduce those results.

Instead, we note that the decay from the excited state �G̃� to

the ground state �S̃� is well described by a smoothly varying,
energy-dependent decay rate �ph���. Incoherent population

of �G̃� by absorption of a thermal phonon is suppressed as
long as 2Tc�kbT, which is satisfied for Tc=0.01 meV and
T=100 mK.

Finally, we can combine the coherent spin precession due
to interaction with nuclear spins with the charge-based decay
and dephasing mechanisms to investigate the relaxation of

�Tm� states to the state �S̃�. Of particular interest is the regime

past the charge transition, �	Tc, where �G̃���S� becomes
nearly degenerate with �T0�, as was studied in the experiment
of Ref. 20. An effective five-level system is formed with the
levels ��T+� , �T0� , �T−� , �S�� described by the spin Hamiltonian
of Eq. �20�, while inelastic decay from �S� to ��0,2�S� �the
fifth level� is possible at a rate ����, as shown in Fig. 5�b�.

To analyze this process, we start with the Liouvillian su-
peroperator that describes inelastic tunneling:

�̇ = i�,H/�� + ����/2��S��S�� + ��S��S� − 2��0,2�S��S���S�

���0,2�S�� , �23�

where

H = ��eB� l · Sl�̂ + Br� · Sr�̂ ��1,1� − ����0,2�S���0,2�S� . �24�

l and r indicate left and right spins for the �1,1� charge space.
Assuming that the nuclear field is quasistatic �QSA�, we can
diagonalize H. The eigenstates are the ground state ��0,2�S�
and �1,1� states with spin aligned and antialigned with the

local magnetic fields, B� l,r=B� ext+B� nuc
l,r . We write these eigen-

states as �s ,s��= �s�l � �s�r, where s ,s�= ±1/2 are the eigen-
values of the spin projection on the fields of the l and r dots,
respectively. The eigenvalue for ��0,2�S� is EG=−�, and the
other four eigenstates �s ,s�� have energy

Es,s� = s�e�Bl� + s��e�Br� . �25�

In considering the decay from the energy eigenstates of
the nuclear field, �s ,s�� to ��0,2�S�, we eliminate rapidly
varying phase terms, e.g., �1/2 ,−1/2��−1/2 ,1 /2�. This is ap-
propriate provided that the inelastic decay mechanism ���� is
slow in comparison to the electrons’ Larmor precession in
the nuclear field Bnuc. In this limit, each state �s ,s�� decays to
��0,2�S� with a rate given by ������s ,s� � �0,2�S��2, as indi-
cated in Fig. 5�c�. A detailed analysis is given in Appendix
A. For convenience, we write cs,s�= �s ,s� � �0,2�S�.

Starting with a mixed state of the �1,1� subspace �as in
Ref. 20�, we can find analytical expressions for the time evo-
lution of the density matrix of an initial form ��t=0�
=�s,s��s ,s���s ,s�� /4. This initial state corresponds to a mix-
ture of the four �1,1� spin states. The charge measurement
distinguishes only between �1,1� states and ��0,2�S�; accord-
ingly, we evaluate the evolution of the projector for the �1,1�
subspace P11=�s,s��s ,s���s ,s��. In particular,

P11�t� = e−�����c++�2t/2 + e−�����c+−�2t/2. �26�

Finally, we must average over possible initial nuclear-spin
configurations to find the measured signal. This means evalu-
ating �P11�t��nuc, a difficult task in general. However,

�P11�t��nuc � e−������c++�2�nuct/2 + e−������c+−�2�nuct/2. �27�

In this approximation, we replace the average of the expo-
nents with the average values for the coefficients
�c++�2 , �c+−�2. The validity of this approximation can be
checked with numerical integration, and for the range of pa-
rameters presented here, the approximation holds to better
than 1%.

The mean values of the coefficients �c++�2 and �c+−�2 are, in
turn, straightforward to calculate approximately �as done in
Ref. 20, supplemental information61�, giving

�+− = ������c+−�2�nuc =
����

4
�1 + IlIr� , �28�

FIG. 5. �Color online� �a� Energy-level structure as a function of
detuning. Coupling to a Fermi sea with kbT	�e�Bext� leads to equal
filling of all four low-energy states in the far-detuned regime �la-
beled start�. Then � is changed rapidly with respect to the tunnel
coupling, leading to all four spin states still in the �1,1� charge
configuration. The time spent waiting in this configuration results in
slow decay of the metastable �1,1� states to the ��0,2�S� state. �b�
Nuclear spins couple between the eigenstates of exchange, and slow
inelastic decay at a rate � proceeds from �S� to ��0,2�S�. �c� The
same process but for the eigenstates of the double-dot Hamiltonian.
The ms=0 states are equal superpositions of �S� and decay rapidly to
��0,2�S�, while the �ms�=1 states are only weakly mixed at large
magnetic field with the �S�, resulting in slow decay to ��0,2�S�.
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�++ = ������c++�2�nuc =
����

4
�1 − IlIr� , �29�

with

Il =
1

��1 + 3	Bnuc,l

Bext

2� , �30�

and similarly for Ir. We plot the product IlIr, found in both
Eqs. �28� and �29�, as a function of external magnetic field
for increasing difference in dot sizes in Fig. 6. This indicates
that the effective decay rates are largely independent of the
ratio of dot sizes, relying only on the average effective
nuclear field Bnuc= �Bnuc,l+Bnuc,r� /2.

We find that past the charge transition with �	 �Tc�, the
states �S� and �T0� decay to ��0,2�S� with a lifetime �+−

−1,
while the two �ms�=1 triplet states have a lifetime �++

−1. At
finite magnetic field, �+−	�++, and we can call the states of
the �ms�=1 subspace “metastable.” The metastability allows
for charge-based measurement to distinguish between
��S� , �T0�� and �T±� subspaces: by using a nearby charge sen-
sor, the decay of �S� , �T0� may be detected long before �T±�
has finite probability of decay in the weak tunneling limit.
This indicates that, while at zero-field decay of the �1,1�
states to the state ��0,2�S� is governed by a single exponen-
tial, a double-exponential behavior appears as B�Bnuc is sat-
isfied, in direct confirmation of the results of Ref. 20.

Contrary to expectation, the blockade is contributed solely
by the �ms�=1 triplet states. In particular, spin blockade is
charge transport at finite bias through, for example, the
charge states �0,1�→ �1,1�→ �0,2�. For biases between left
and right leads that are less than J, only the four �1,1� spin
states and the state ��0,2�S� are necessary for understanding
the process. An electron �of arbitrary spin� loads from the left
lead, creating with equal probability any of the states �s ,s��.
This then tunnels with a rate �+− or �++ to the state ��0,2�S�,
after which the extra electron on the right tunnels into the
leads, and the cycle repeats anew. The average current
through the device is dominated by the slowest rate, which,

in the absence of cotunneling, is �++. In other words, loading
into a spin-aligned state �s ,s� prevents further charge trans-
port until it decays, with rate �++, or is replaced from the
leads by a cotunneling process.

The measurements by Johnson et al. demonstrate that the
transition probability from �1,1� to ��0,2�S� depends strongly
on both magnetic field and detuning.20 Our theoretical
model, which accounts for hyperfine mixing coupled with
inelastic decay agrees well with experimental results for time
scales less than 1 ms. The discrepancy between experiment
and theory for longer times suggests that other spin-
relaxation processes such as spin-orbit mediated relaxation
may become important above 1 ms.

IV. QUANTUM CONTROL OF TWO-ELECTRON SPIN
STATES

We now analyze how time-dependent control of gate pa-
rameters �i.e., �� may be used to control electron spin in
double quantum dots. Of particular interest are methods for
probing the hyperfine interaction more directly than in the
previous section. The techniques we use are primarily rapid-
adiabatic passage and slow adiabatic passage. Rapid-
adiabatic passage �RAP� can prepare a separated, two-spin
entangled state ��S� in the far-detuned regime� and, when
reversed, allows a projective measurement that distinguishes
the state �S� from the triplet states �Tm�. A similar technique
used at large external magnetic field, slow adiabatic passage
�SAP�, instead prepares and measures the eigenstates of the
nuclear field, �s ,−s�. We connect these techniques with the
experiments in Ref. 21 and estimate their performance.

A. Spin-to-charge conversion for preparation and measurement

Adiabatic passage from �−Tc to �	Tc maps the far-
detuned regime states �S� , �Tm� to the states past the charge
transition ��0,2�S� , �Tm�, allowing for a charge measurement
to distinguish between these results.21,26 In the quantum op-
tics literature, when adiabatic transfer of states is fast with
respect to the relevant dephasing �nuclear-spin-induced mix-
ing, in our case�, it is called RAP and we adopt that termi-
nology here.

When the change of detuning � is adiabatic with respect to
tunnel coupling Tc but much faster than �eBnuc �the hyperfine
coupling�, the adiabatic passage is independent of the nuclear
dynamics. For example, starting past the charge transition

with the state ��0,2�S��=�S̃�� and �	Tc and using RAP to the
far-detuned regime cause adiabatic following to the state �S�.
This prepares a separated, entangled spin state. The proce-
dure is shown in Fig. 7�a�.

The reverse procedure may be used to convert the singlet
state to the charge state �0,2� while the triplet remains in
�1,1�. Then, charge measurement distinguishes singlet versus
triplet. Specifically, if we start with some superposition in the
far-detuned regime, ���=cS�S�+�mcm�Tm�, where cS and cm
are quantum amplitudes, after RAP past the charge transi-
tion, with �	Tc, the state is ����=cSei���0,2�S�+�mcm�Tm�,
where � is the accumulated adiabatic phase. Recalling that
��0,2�S� is in the �0,2� charge subspace, while �Tm� states are

-4 -2 0 2 4
B

Bnuc

0

0.2

0.4

0.6

0.8

IlIr

FIG. 6. �Color online� The product IlIr as a function of external
magnetic field B in units of average nuclear field Bnuc= �Bnuc,l

+Bnuc,l� /2. Several ratios of dot nuclear fields, r=Bnuc,l /Bnuc,r, are
considered: r=1 �black�, r=1/3 �red�, and r=0 �blue�. Cusp behav-
ior near zero field is found in the limit of highly inhomogeneous dot
field strengths.
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in the �1,1� subspace, a nearby electrometer may distinguish
between these two results, performing a projective measure-
ment that leaves the �Tm� subspace untouched. Furthermore,
this measurement is independent of the adiabatic phase.

In contrast, if the change of � is slow with respect to
nuclei, adiabatic passage follows to eigenstates of the hyper-
fine interaction. For simplicity, we assume that RAP is used
between the charge transition to just past the S−T+ resonance
of Eq. �22�, such that we may neglect transfer between the S
and T+ states see also Fig. 8�b��. This requires an external
magnetic field �Bext�	Bnuc. Continuing from this ���−Tc�
point to the far-detuned regime, � is changed slowly with
respect to ��eBnuc. Accordingly, adiabatic passage proceeds
into eigenstates of the nuclear field, �s ,−s�, as shown in Fig.
7�b�. These are the product spin states, with one spin up and
the other down with respect to magnetic field. This technique
may be called SAP.

Rapid-adiabatic passage maps �S�↔ei���0,2�S�,
�Tm�↔ �Tm�, leaving the triplet states unperturbed. For SAP,
the mapping is

��0,2�S� ↔ ei��s,− s� ,

�T0� ↔ ei���− s,s� ,

�T±1� ↔ �T±1� . �31�

It is always the current, lowest-energy eigenstate of the
nuclear field that ��0,2�S� maps to. That is, we choose s such
that Es,−s�E−s,s, with Es,−s=s�e�Bnuc,z

l −Bnuc,z
r � �see Sec. II,

Eq. �25�, evaluated at large external magnetic field�. We re-
mark that SAP allows for deterministic preparation and mea-
surement of states rotated � /2 with respect to �S� , �T0� with-
out direct knowledge of which states they correspond to for
each realization.
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FIG. 7. �Color online� �a� Rapid-adiabatic passage: starting in
the state ��0,2�S�, the detuning is changed from �	Tc to �−Tc,
fast with respect to the nuclear energy scale �eBnuc. �b� Slow adia-
batic passage: as above, but once the system is past the S−T+ de-
generacy point, the change of � is made slow with respect to the
nuclear energy scale. The zoomed-in section shows the current
nuclear energy splitting ��̂� and the nuclear field eigenstates �s ,
−s� and �−s ,s�. Both procedures may be reversed to transfer either
�S� �RAP� or �s ,−s� �SAP� to ��0,2�S� while keeping the other states
within the �1,1� charge configuration, allowing for charge-based
measurement of the system.
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FIG. 8. �Color online� Pulse sequences: detuning parameter �
versus time for �a� RAP for measurement of the singlet autocorre-
lation function, �b� SAP for the exchange-gate sequence, and �c� the
singlet-triplet echo sequence. Blue is the charge transition region,
while yellow is the far-detuned regime. The charge degeneracy
point the crossing from �1,1� to �0,2�� and the degeneracy between

�S̃� and �T+� when j���=�e�Bext�� are shown for reference.
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We now examine the adiabaticity condition for slow adia-
batic passage. In SAP, � is changed at a constant rate to
approach the far-detuned regime. Using the approximate re-

lation J���=4Tc
2 /�, the adiabaticity condition is �J̇ �Es,−s�2.

Neglecting factors of order unity, this can be rewritten as

��̇
Tc

2

�2  ����2.
As a specific case, we consider Tc�5 �eV, and �

� 50,550� �eV. The required time to make the 500 �eV

change, 
, gives ��̇= �


500 �eV, and roughly, ��̇
Tc

2

�2 = �



�50 neV. In units of time, �2�
�13 ns�. For 
=1000 ns,
the adiabaticity requirement is that the current value of
� / �Es,−s��3��1000�13 ns=300 ns. For the nuclear fields
in lateral quantum dots such as those of Ref. 20 �each dot
with a T2

*=10 ns�, the probability of � / �Es,−s��300 ns is

P��Es,−s/��� 3�s−1� = 2�
0

3�s−1

d�
e−��T2

*�2

���T2
*�−2

. �32�

This gives an error probability of 3% for 300 ns rise time,
that is, every 1 in 30 experimental runs, the nuclear gradient
will be too small for the adiabatic filling of ��� to occur.

We can ask the effect of finite, residual exchange energy
Jres at the S point. Finite J leads to filling of a superposition
of �s ,−s� and �−s ,s�:

cos�����s,− s� − sin�����− s,s� , �33�

where the value of s is, as above, determined by the current
value of Es,−s and ��=arctanJres / ��Jres

2 +�2+ ����� is the
adiabatic angle. The resulting loss of contrast will be
sin2������J /2Es,−s�2. For residual Jres�0.1 �, the error is
less than 1%. For Jres�0.25 �, the error is order 2%. The
role of residual nuclear fields during the exchange gate is
evaluated elsewhere.53

B. Probing the nuclear field and exchange interactions with
adiabatic passage

We now consider how adiabatic passage can be used to
probe the dephasing and exchange energy of a spin-singlet
state. This relates directly to a critical question in quantum
information science: how long can two electron spins remain
entangled when the electrons are spatially separated on a
GaAs chip? In our model, variations in the local nuclear
environment cause the spatially separated electrons to expe-
rience distinct local magnetic fields and, hence, precess at
different rates, mixing the singlet and triplet states. If many
measurements are taken to determine the probability of re-
maining a singlet, the time-ensemble averaging leads to an
observable dephasing of the singlet state �T2

*�.21

To evaluate the effects of nuclei on this process, we will
calculate the singlet autocorrelation function AS�t�
= ��S�t� �S�0���2 for the far-detuned regime. This autocorrela-
tion function has been evaluated for quantum chemistry,16

but not for this specific scenario. We remark that our ap-
proach is similar to the single-dot case considered in Refs. 11
and 12.

We start by evaluating the evolution operation U�t�,
where the Schrödinger picture �S�t��=U�t��S�. Taking J→0

for the far-detuned regime, we solve analytically the equa-
tion of motion any spin state of the �1,1� subspace. In par-
ticular, we take the Hamiltonian of Eq. �18� and write it in
the form of two effective fields, each acting separately on
one spin. The evolution operator U�t�=exp�−iHt /�� can be
factorized as U�t�=Ul�t� � Ur�t�, where

Ui�t� = exp�− i�etB� + B� nuc,i� · S� i� �34�

is a rotation of spin i about an axis n� i= �xi ,yi ,zi��B� +B� nuc,i of

angle t�i, where �i=�e�B� +B� nuc,i� /2.
If the system is prepared by RAP in the state �S�t=0��

= ��↑ ↓ �− �↓ ↑ �� /�2 and subsequently measured using RAP to
distinguish the singlet and triplet subspaces, the measure-
ment probes the state’s autocorrelation function. Starting in a
singlet at t=0, the probability of remaining a singlet after a
time t is given by the autocorrelation function

AS�t,B� = ��S�t��S�t = 0���2 = �cos��lt�cos��rt�

+ n� l · n�r sin��lt�sin��rt��2. �35�

To obtain the signal in the quasistatic approximation, Eq.
�35� must be averaged over the different possible nuclear
field values. We examine the zero-field and finite-field cases.

When B� =0, the properties of n� i within the QSA are de-
scribed by �ni,�nj,��=�ij��� /3. Averaging over nuclei, the
signal is

AS�t,0� = �cos2��lt��nuc�cos2��rt��nuc

+
1

3
�sin2��lt��nuc�sin2��rt��nuc, �36�

where

�cos2��it��nuc =
1

2
�1 + e−�1/2��t/T2,i

* �2
1 − �t/T2,i

* �2�� ,

�sin2��it��nuc =
1

2
�1 − e−�1/2��t/T2,i

* �2
1 − �t/T2,i

* �2�� .

We recall that T2,i
* = ��eBnuc,i�−1. A distinct difference of this

model from other dephasing mechanisms is the order 10%
overshoot of the decay at short times and the asymptoptic
approach of AS�t	T2

* ,0� to 1 /3. A classical master equation
would exhibit neither of these features—they are unique
identifiers of the quasistatic regime, in which different coher-
ent dynamics are averaged over many realizations. Numeri-
cally, we find that these qualitative features do not depend on
the relative size of the two quantum dots �Bnuc,l /Bnuc,r� for
variations of up to 50%.

Another regime of interest is when the external field is

much larger than the effective nuclear fields ��B� �	Bnuc,i�.
Spin-flip terms are highly suppressed and the system is re-
stricted to two levels, �S� and the ms=0 triplet �T0�= ��↑ ↓ �
+ �↓ ↑ �� /�2. This is described by the Hamiltonian of Eq.
�21�. This effective two-level system’s evolution operator is
straightforward to evaluate:
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AS�t,B	 Bnuc� = �cos2��̂t�� =
1

2
1 + e−�t/T2,eff

* �2
� , �37�

with T2,eff
* =1/�1

2 �T2,l
* �−2+ �T2,r

* �−2�. Qualitatively, the decay
of the autocorrelation function AS due to the nuclear field is
described by Gaussian decay with a time scale T2,eff

* . Similar
to the case of zero magnetic field, the behavior of this auto-
correlation function is independent of variations in dot size
up to �50%.

We now indicate how slow adiabatic passage at large ex-
ternal magnetic field allows measurement of the results of an
exchange gate. In particular, SAP allows for preparation and
measurement of the individual spin eigenstates �1/2 ,−1/2�
and �−1/2 ,1 /2�. An exchange gate leads to partial rotation
between these states, where the rotation angle is given by the
product of the exchange energy during the gate, J���, and the
time the exchange energy is nonzero, tE. Finally, reversing
SAP takes the lower-energy eigenstate ��s ,−s�� back to
��0,2�S� while the higher-energy eigenstate ��−s ,s�� is
mapped to �T0�, a �1,1� charge state. The final measurement
determines whether the final state is the same as the initial
state the �0,2� result� or has changed to the state with the
two spins exchanged the �1,1� result�. Thus, preparing the
state �1/2 ,−1/2� and measuring in the same basis distinguish
the results of the exchange-based rotation of the two-spin
state. For example, when the probability is 50% for either
measurement result, a �SWAP gate has been performed.
When the probability goes to 100% of recovering the higher
energy eigenstate measuring �1,1��, a complete swap of the
two spins has occurred �swap�.

As before, we consider the probability of returning to the
lower-energy eigenstate. Now, however, this state is the �s ,
−s� state as described in the previous section. After preparing
this state, we perform the resonant exchange gate of angle
�E=Jt /�, where t is the time spent waiting with exchange
energy J. This leads to a rotation of the state �s ,−s�. Its
autocorrelation function is given by

As,−s�t� = ��s,− s�t���s,− s��2 �38�

=cos2��E/2� . �39�

If the exchange term J���eBnuc, then additional effects due
to nuclei would be observed; we evaluate these below.

We emphasize that the combination of RAP for prepara-
tion �prepares �S��, SAP for preparation �prepares lower-
energy eigenstate of the nuclear field, ����, RAP for mea-
surement �spin to charge in �S� , �T0� basis�, and SAP for

measurement �spin to charge in current eigenstates of the
nuclear field, ����, when combined with the exchange gate
�rotations of ��� to �± �+ i�� ��, allows for full state tomog-
raphy in the �S� , �T0� subspace.

C. Errors in exchange gates

The primary error in exchange gates is likely due to
charge-based dephasing and is directly related to the para-
metric dependence of the exchange energy J on gate voltages
near the charge transition.27,30,54 In addition, other errors are
possible due to the stochastic nature of the nuclear field. For
example, there is the possibility that the current value of the
field gradient frequency �̂ is sufficiently small to make the
initial and final transfer stages nonadiabatic. Also, the gradi-
ent can flip sign in the course of the experiment. Finally,
finite residual exchange interaction during SAP reduces ef-
fectiveness. We consider each of these, in turn, below.

In the far-detuned regime, the energy gap between the
�1,1� singlet and/or triplet space and higher orbital states, as
well as �2,0� and �0,2� charge states, is large �of order ��0,
the orbital level spacing of a single dot, and Ec /2, the single-
dot charging energy, respectively�. At dilution refrigerator
temperatures, this energy gap is many times greater than kbT,
and absorption of a quantum of energy from the environment
leading to incoherent excitation may be neglected. Also in
this regime, the residual exchange splitting is both numeri-
cally small and insensitive to first-order fluctuations in de-
tuning, �, leading to little charge-based dephasing due to
differential coupling of the �S� state to the doubly occupied
states when compared to the �Tm� states’ couplings to doubly
occupied states. The system remains sensitive to charge-
based dephasing up to second order due variations in the
tunnel coupling, Tc �Fig. 9�a��. If we can write the variations
of Tc from the mean as �Tc, its correlation function is gen-
erally given by

��Tc�u + 
��Tc�u�� = �2� d� STc
���ei�
. �40�

The corresponding phase noise term in the Hamiltonian is
V11=��Tc�u���m�Tm��Tm�− �S��S�� /2, where �=

8TcJ

Ec
2 �10−3,

again using Ec=5 meV, J=0.3 meV, and �Tc�=0.01 meV.
As an example, a coherence between the �S� and �Tm�

subspaces in the far-detuned regime could be expected to
decay due to the noise on Tc according to

�exp	− i�/��
0




du��Tc�u��
�
= exp	− �2� d� STc

���
sin2�
�/2�

��/2�2 
 . �41�

While we consider a variety of noise sources in Appendix B,
it is instructive here to take the case of white-noise spectrum
with STc

=�0 /2�. It leads to exponential decay of coherences
between �S� and states of the �Tm� subspace with a constant
�Tc

=�2�0. In general, as �1, this decay will be negligible.
The charge transition will have stronger dephasing when

compared with the far-detuned regime. In addition to inelas-

FIG. 9. Level structures of the double-dot system in the �a�
far-detuned regime, with charge dephasing shown, and �b� near the
charge transition with charge-based decay and dephasing.
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tic decay of the excited adiabatic state to the ground adia-
batic state, the system is susceptible to fluctuations in both �
and Tc, as J is potentially large and strongly dependent on
gate parameters �Fig. 9�b��. In so far as the power spectra
associated with Tc and � have no appreciable spectral com-
ponents at frequencies of order �, the excitation and/or relax-

ation terms between �G̃� and �S̃� may be neglected. Then, we
may restrict considerations to dephasing of coherence be-

tween the subspace of �Tm� and the state �S̃� and write the
effective Hamiltonian as

V11−02 = ���Tc�
� + �����
����
m

�Tm��Tm� − �S̃��S̃��� 2,

�42�

with ��=
2Tc

�/2+� and ��= 1
2

�1+ �
�/2+�

�. The accompanying noise
is given again by Eq. �41�, but with �=�����2+ ����2 and the
power spectrum replaced with

S11−02��� = 	��

�

2

STc
��� + 	��

�

2

S���� . �43�

While �� may be small ��1�, near the charge transition, ��
is of order unity. This indicates that noise in the detuning
parameter � has significant repercussions for coherences be-
tween singlet and triplet states during exchange-gate opera-
tion.

We consider charge-based dephasing for the exchange
gate according to Eq. �41�. In all cases, we assume that the
spectral function has a high-frequency cutoff � such that �
J. This assumption prevents dephasing noise from produc-
ing population changes �relaxation� due to energy conserva-
tion. Additionally, we rewrite the expected probability of
maintaining phase coherence Eq. �41�� as

exp�− �2P� , �44�

where P=�d�S���
sin2�
E�/2�

��/2�2 is set by the spectral function

and the time of the exchange gate, 
E. This allows separation
of the interaction strength ��� and the noise spectrum. Each
spectrum considered has a normalization parameter � such
that S��� has units of inverse time.

We note that in general, the number of observable ex-
change oscillations will be limited by these dephasing pro-
cesses. By finding T2= P−1��−2�, the observable number of
oscillations goes as T2J /�. When, for example, S���
=� /2�, we may easily invert P�t� and find T2=�−2 /�.

Comparing the behavior of the Ohmic and super-Ohmic
cases to the 1/ f case �see Appendix B�, the limiting value of
P for the super-Ohmic case and the power-law tail of the
Ohmic decay indicates that for small coupling parameter �,
the superexponential 1 / f terms �going as a Gaussian� will
dominate at long times. For very short interaction times, all
three will be less than the white-noise contribution, which
goes linearly in time. The different behaviors are shown in
Fig. 10.

This indicates that electrical control of exchange interac-
tions in double-dot systems may be relatively robust with
respect to nuclear-spin degrees of freedom. However, during
the exchange gate, the system is susceptible to charge-related
dephasing. The observed decay of oscillations of Ref. 21, in
which the decay rate appears to match the exchange energy
such that the number of exchange oscillations observed is
independent of the detuning, is qualitatively similar to the
behavior of oscillations in the presence of sub-Ohmic noise.
A more detailed experimental analysis of the noise will be
required before a direct comparison between experiment and
theory will be possible.

V. EXCHANGE GATES AND ECHO TECHNIQUES

The techniques of rapid-adiabatic passage, slow adiabatic
passage, and time-resolved control of the exchange interac-
tion in the previous section have far reaching applications for
quantum control of spins.55 In this section, we consider how
exchange gates can undo the effect of the quasistatic nuclear
field, greatly reducing the deleterious effects of nuclear spins
on electron-spin coherences and allowing for electron-spin
measurements to determine nuclear-spin correlation func-
tions.

A. Spin-echo in the singlet-triplet basis

Since the nuclear fields vary slowly on time scales com-
pared to a typical pulse cycle time, a spin-echo pulse se-
quence can be used to refocus the spin-singlet state. A spin-
echo pulse sequence based on fast electrical control of the
exchange interaction was demonstrated in Ref. 21. The ex-
periment starts by using RAP to transfer ��0,2�S� to �S�, pre-
paring a separated singlet pair of electron spins. As demon-
strated in the T2

* experiment, the hyperfine interaction mixes
the singlet and triplet states on a 10 ns time scale. After a
separation time tS, a � exchange pulse �swap� is performed
by adjusting the detuning to a region with a finite exchange
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t [ns]

0 5 10 15
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FIG. 10. Decay of exchange oscillations for the four scenarios
�clockwise from lower left�: white noise, 1 / f , Ohmic, and super-
Ohmic ��2�. White corresponds to probability 1 of ending in the
initial state �s ,−s� after exchange interaction is on for a time 
E

�bottom axis�, while black is probability 0 of ending in the initial
state. Tunnel coupling is taken to be 10 �eV, and the spectral den-
sity ��� is chosen for similar behavior near �=50 �eV. Note that
1 / f terms increase decay in the slow oscillation limit, while increas-
ing powers of � �white noise=0, Ohmic=1, and super-Ohmic=2�
lead to more oscillations for smaller exchange energies.
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energy. The exchange energy is then set to zero by moving to
the far-detuned regime for a time tS�, during which the sin-
glet state refocuses.

The dephasing due to hyperfine interactions occurs by
producing a relative, unknown phase between �↑↓� and �↓↑�.
Switching between these two states via exchange gates will
produce an echo �recovery of the original state �S�� if the
waiting time before and after the swap operation is the same.
In other words, the pseudospin of �S� and �T0� �the ms=0
subspace� is amenable to echo techniques using exchange
interactions.

We will use the pulse sequence of Fig. 8�c�. In the far-
detuned regime at finite field, �S� and �T0� mix due to nuclei,
as per the Hamiltonian of Eq. �21�. This mixing is driven by
a relative constant, but unknown, energy, corresponding to
the current value of

��̂ = �e�B̂nuc,l,z − B̂nuc,r,z� . �45�

Within the corrections to the quasistatic approximation, �̂

=�e�B̂l,z�t�−�B̂r,z�t��, where �B̂l�r�,z�t� are random Gaussian
variables described by Eq. �12�. For clarity, we rewrite it
here as

��̂�t + 
��̂�t�� =� d� S���ei�
. �46�

For example, the singlet-singlet correlation function at fi-
nite field Eq. �37�� is modified, noting that

�cos2	�
0

t

�̂�t��dt�
�
=

1

2
�1 + exp	−� d� S���

sin2�
�/2�
��/2�2 
� . �47�

For S��� with a high-frequency cutoff below 1/
, we can
Taylor expand the sine term. Then, comparison with Eq. �37�
indicates

T2
* =�� d� S��� . �48�

Now, we consider how this result changes with the more
complex sequence given by Fig. 8�c�, in particular, its depen-
dence on 
E and 
S�. If 
E=0, then nothing has changed from
before, except now the system evolves according to
Unuc�
S��Unuc�
S�=Unuc�
S+
S��. However, what happens
with finite 
E?

For our reduced two-level system, when 
E�0, the effec-
tive Hamiltonian during this stage is given by

Hef f,E = ��̂�̂x/2 + J��E��̂z/2. �49�

where Pauli matrices with states �S�, �T0� as a psuedospin, in
our logical basis defined above �i.e., �z= �T0��T0�− �S��S��.
Taking the turn on of finite J to be instantaneous, the total
evolution operator is

U�
S�,
E,
S� = Unuc�
S��exp�− iHef f,E
E/��Unuc�
S� .

�50�

When the exchange energy for the middle point satisfies
J��E�	�eBnuc, we approximate the middle term of the evo-
lution operator by UE�
E��exp(−i
EJ��E��̂z /2�).

For now, taking �̂ to be constant, at the end of the pulse
sequence, the probability of returning to the state ��0,2�S�
�C� is given by

C = Trnuc��0�e−i
S��̂�̂x/2e−i
EJ��E��̂z/2�e−i
S�̂�̂x/2�0��2� . �51�

To see the analogy between this evolution and a spin-echo
experiment, we insert unity after the initial ket, i.e., �0�
=eiJ��E��̂z/2�e−iJ��E��−1�/2��0�, as 0 is the −1 eigenstate of �z.
The overall phase is irrelevant due to the absolute value
terms, and so we rewrite the above as

C = Trnuc��0�e−i
S��̂�̂x/2�e−i
EJ��E��̂z/2�e−i
S�̂�̂x/2ei
EJ��E��̂z/2��

��0��2� . �52�

The term in parentheses, an exchange gate, is a rotation of
angle �E=
EJ��E� /� about the z axis of the psuedospin. It
acts on the operator Unuc�
S�=e−i
S�̂�̂x/2, flipping the sign of
the �x operator when �E=� �swap�.

We can probe its effects by analogy with standard spin
echo. For example, when �E=�, we get C= 1

2 1+exp(−��2�
��
S−
S��

2 /2)�. This means the dephasing due to nuclei in
the first half of the sequence is exactly undone when the
rephasing time is equal �
S=
S��. For fixed 
S+
S�, the prob-
ability of returning to the singlet state as a function of 
S
−
S� and 
E should exhibit 50% mixing expected for dephas-
ing when �
S−
S���T2

* and when 
EJ /� is not an odd integer
multiple of �. For example, setting 
S+
S�=100 ns and us-
ing �E such that J��E�=��e�20 mT�, the probability exhibits
this behavior.

In practice, the instantaneous approximation breaks down
in realistic situations, as does the J	�eBnuc assumption. The
former is easily fixed by noting that such a “Rabi-type”
pulse only has sensitivity to the integrated area, i.e., �
=�dt J(��t�). The latter requires working with finite 
E�.
This effect has been considered in detail elsewhere.53

B. Probing nuclear-spin dynamics through echo techniques

So far, the analysis has worked entirely within the QSA.
However, the echo sequence, in principle, reveals higher-
order dynamical information about the nuclear field and
other noise sources. Effects of nuclear-spin dynamics on
electron-spin decoherence has been considered by several
authors.14,15,17,28,29 We now consider the echo sequence with
�̂�t� a Gaussian variable slowly varying in time. This allows
a large range of possible noise sources and correlation func-
tions to be considered.

Assuming that the exchange gate is of high fidelity and

insensitive to the current value of Âz, the measured result of
the echo sequence is given by
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C = ��0L�exp	i�
tS

tS+tS�
dt �̂�t��x/2 − i�

0

tS

dt �̂�t��x/2
�0L��2

�53�

=cos2�	�
tS

tS+tS�
dt �̂�t� + �

0

tS

dt �̂�t�
� 2� �54�

=
1

4
e−i� + ei� + 2� �55�

=
1

2
e−��2�/2 + 1� , �56�

where �=�tS

tS+tS��̂�t�dt+�0
tS�̂�t�dt. The second moment of �

is

��2� = ��S�
2 � + ��S

2� − 2��S��S� , �57�

with ��S�
2 �=�d� S��� 4

�2 sin2�tS�� /2���tS� /T2
*�2 and similarly

for �S. The cross term, corresponding to the correlations
between the two frequencies, is

2��S��S� =� d� S���
sin�tS�/2�sin�tS��/2�

��/2�2 ei�tS+tS���/2.

�58�

Finally, when tS= tS�, the second moment is

��2� = 2� d� S���
sin2�tS�/2�

��/2�2 1 − eitS�� . �59�

For low-frequency noise, with cutoff ���d� �2S����1/2

1/ tS, we obtain ��2��2�tS�2� �tS��2, or decay in the total
wait time 2tS with an effective time constant

T2,SE = 81/4�T2
*/��1/2. �60�

Our evaluation has implicitly assumed that above the cutoff
�, S��� dies off at least as 1 /�3. We suggest that this is
appropriate for interaction times on the order of
microseconds—initial decay of the nuclear-spin correlation
function is quadratic. For longer interaction times, a different
decay morphology going as exp�−t3�� could be observed.

Our predicted decay is consistent with the experiments of
Ref. 21. In Refs. 17, 18, 28, and 29, � is of order 10 ms−1,
giving T2,SE=2 �s. However, addition exponential decay
could be observed if the high-frequency cutoff assumed
above has a too slow decay, going as �−2−� with ��1. Fur-
thermore, higher-order pulse sequences, such as Carr-Purcell,
will likely allow for extensions of the echo signal to substan-
tially longer times.56–58

The experiments discussed in the previous sections dem-
onstrate that the hyperfine interaction is efficient at dephas-
ing an initially prepared spin-singlet state on a 10 ns time
scale. By using a simple spin-echo pulse sequence, this bare
dephasing time was extended by over a factor of 100 to times
T2�1.2 �s. Further experimental effort will be required to
fully map out the nuclear correlation function and extend the
lower bound on electron-spin coherence times.

VI. CONCLUSIONS

We have shown how a model combining charge and spin
interactions for two electrons in a double quantum dot effec-
tively describes the experimental results of Refs. 20 and 21.
By starting with the case of a single electron in a single dot,
we employed the quasistatic approximation10,12,15,17,18,27–29

and considered its applicability in describing current experi-
mental results.

The spin interactions with nuclear spins are extended to
the double-dot case, and two regimes emerge: the far-
detuned regime, in which two electrons are in separate dots
and interact with independent nuclear fields, and the charge
transition, in which the two electrons may transition from a
separated orbital state to a doubly occupied, single-dot state.

This model was used to describe spin blockade, and we
found that spin blockade is broken by interactions with nu-
clei near zero magnetic field, explaining the experimental
results of Johnson et al.20 A striking magnetic-field depen-
dence is derived, consistent with the observed experimental
behavior. This indicates that the dominant mechanism for
spin blockade at finite magnetic field is trapping of the ms
= ±1 separated spin states, as their mixing with the charge-
transition-allowed singlet �G� is suppressed by finite Zeeman
splitting. Observation of the breaking of spin blockade near
zero field provides a sensitive measure of the magnitude of
the random nuclear-spin-induced magnetic field.

Time-domain control of local potentials, achieved through
manipulation of electrostatic depletion gates, provides pow-
erful mechanisms for preparing and measuring spin singlets,
as well as eigenstates of the nuclear field. These techniques
have been exploited by Petta et al. to measure the effective
dephasing of a two-spin entangled state and to probe, via
coherent oscillations in the ms=0 two-spin subspace, the ex-
change interaction as controlled by gate voltages.21 Limiting
mechanisms for such oscillations, due to charge fluctuations
of indeterminate nature, are considered for a variety of envi-
ronmental noise spectra.

Finally, we analyzed how controlled exchange interac-
tions can protect the electron spin from the deleterious effect
of nuclear spins by working within a two-spin subspace, put-
ting in specific terms protocols previously conceived more
generally. We expect that the limiting mechanism for the
rephasing of the two-spin states comes from corrections to
the quasi-static approximation, and as such, spin-echo ex-
periments provide a useful measure of the validity of this
approximation.
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APPENDIX A: ADIABATIC ELIMINATION FOR
NUCLEAR-SPIN-MEDIATED INELASTIC DECAY

We will transform the superoperator Eq. �23�� into the
interaction picture, but first introduce matrix elements be-
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tween the eigenstates of the quasistatic fields and the state �S�
occurring in the superoperator. For a single spin in a mag-

netic field B� =Bnuc� �x ,y ,z� and �B�=Bnucn �the Roman vari-
ables x, y, z, and n are chosen such that the nuclear field
contribution will be of order unity�, the eigenstates may be
written by rotation from spin states aligned with the z axis
���↑�,�↓���:

	 �1/2�
�− 1/2� 
 = lim

x�→x+

1
�2n�n + z�

	 n + z x� − iy

x� + iy − n − z

	�↑�

�↓� 
 .

�A1�

The limit is taken only to remove the degenerate case of field

antialigned with the z axis, i.e., B� = �0,0 ,−B�, which would
be degenerate for this matrix, and is implicit in what follows.
The corresponding eigenvalues of the Hamiltonian are
±��n /2 in this notation.

Setting �S�= ��↑ ↓ �− �↓ ↑ �� /�2 and using the single spin

transformations for l and r separately with B� l=Bnuc
l

� �xl ,yl ,zl�, �Bl�=Bnucnl and similarly for r�, we write

c1/2,1/2 = � 1

2
,�1

2
�S�

=
1

N
�xl + iyl��nr + zr� − �nl + zl��xl + iyl�� , �A2�

c1/2,−1/2 = � 1

2
,− �1

2
�S�

=
1

N
− �nl + zl��nr + zr� − �xl + iyl��xr − iyr�� ,

�A3�

c−1/2,1/2 = �−
1

2
,�1

2
�S� = − c1/2,−1/2

* , �A4�

c−1/2,−1/2 = �−
1

2
,− �1

2
�S� = c1/2,1/2

* , �A5�

and

N = �8nlnr�nl + zl��nr + zr� . �A6�

It is convenient to define c+=c1/2,1/2 and c+−=c1/2,−1/2 as the
spin-aligned and spin-antialigned coefficients, respectively.
This allows us to express �S� occurring in Eq. �23� in terms
of the eigenstates of the Hamiltonian as

�S� = �
s,s�

cs,s��s,s��

= c++�1

2
,
1

2
� + c+−�1

2
,−

1

2
�

− c+−
* �−

1

2
,
1

2
� + c+

*�−
1

2
,−

1

2
� . �A7�

In the interaction picture, each eigenstate �s ,s�� evolves ac-
cording to

�s,s��t�� = e−iEs,s�t/��s,s�� = e−i�snl�eBnuc,l+s�nr�eBnuc,r�t,

�A8�

and �S�t��=�s,s�cs,s��s ,s��t��.
With these results, the Liouvillian may be put into the

interaction picture:

�̇̃ =
����

2

� �
s,s�,r,r�

cs,s�cr,r�
* ei�r−s�nl�eBnuc,l+�r�−s��nr�eBnuc,r�tLs,s�,r,r��̃� ,

�A9�

where

Ls,s�,r,r��̃� = �s,s���r,r���̃ + �̃�s,s���r,r��

− 2�G��r,r���̃�s,s���G�� . �A10�

So far, this result is exact within the QSA.
When �����eBnuc,l ,�eBnuc,r, the exponential phase

terms of Eq. �A9� oscillate substantially faster than �̃
evolves. Adiabatic elimination becomes an appropriate ap-
proximation when we may neglect quickly rotating terms,
i.e., if we may neglect certain degenerate cases, such as situ-
ations with �nl�eBnuc,l−nr�eBnuc,r������. In addition, we are
implicitly assuming that ��������+Es,s�−Er,r��, which is
appropriate for large � and smooth phonon density of states.

More explicitly, we can average each term of over several
spin rotations and make a Born approximation:

ei�r−s�nl�eBnuc,l+�r�−s��nr�eBnuc,r�tLs,s�,r,r��̃�t��

→ �1



�

t−


t

ei�r−s�nl�eBnuc,l+�r�−s��nr�eBnuc,r�t�dt��Ls,s�,r,r��̃�t�� .

�A11�

The time averaging for a given s ,s� ,r ,r� is straightforward
as long as nlBnuc,l�nrBnuc,r,

62 giving

lim

→ 

1



�

t−


t

ei�r−s�nl�eBnuc,l+�r�−s��nr�eBnuc,r�t�dt� = �s,r�s�,r�.

�A12�

Thus, terms with quickly varying phase go to zero.

APPENDIX B: DEPHASING POWER SPECTRA

We now evaluate dephasing in exchange gates due to
charge fluctuations for a variety of spectral functions. The
error should go as 1−exp�−�2P�� /2, where the value �
depends only on the detuning parameter. The impact of
the particular spectral function is encompassed in P

=�d� S���
sin2�t�/2�

��/2�2 . We have assumed that S��� has a high-

frequency cutoff �1/ t.
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1. White noise

We set S���= �
2�e−�/�. Then, we can evaluate

P =
�

2�
� d�

sin2��t/2�
��/2�2 e−�/� � �t . �B1�

This indicates the expected exponential decay of coherence
due to white-noise dephasing.

2. 1 / f noise

With S���=�2 /� and frequency cutoffs B����1/ t,

P = 2 log�/B���t�2. �B2�

For a bath of 1 / f distributed fluctuators, the initial dephasing
is quadratic in the time of interaction and increases as the
measurement time scale �1/B� increases. At long times, the
decay is Gaussian, with superexponential suppression of co-
herence.

3. Ohmic noise

Taking S���=g�e−�/�, evaluation of P is possible, giving

P = 2g log1 + ��t�2� . �B3�

When considered in the decay function exp�−�2P�, this gives

a nonexponential decay law, exp�−�2P�= 1+ ��t�2�−2g�2
.

In the short-time limit, this is quadratic decay, going as

1−2�g�2���t�2+O(��t�4), while the long-time behavior is a
power law with power −4g�2.

4. Super-Ohmic noise

For the final spectral function considered here, we set
S���=�1−!�!e−�/�, where !�1 indicates super-Ohmic noise.
Evaluation of P proceeds in a straightforward manner, giving

P =
1

4
��! − 1�	 �

�

1−!

�1 − 1 + ��t�1/2−!/2�

�cos�! − 1�tan−1��t��� , �B4�

where ��x� is the gamma function. This type of decay has a
limiting value of

lim
t→ 

P = 4��! − 1�	 �
�

1−!

�B5�

and short-time behavior according to

P�t� = 2!�! − 1���! − 1�	 �
�

1−!

��t�2 + O„��t�4
… . �B6�

For visual comparison, we calculate the expected, observ-
able Rabi oscillations using SAP as a function of time at
finite exchange �tE� and at detuning � in Fig. 10. In essence,
increasing the exponent of the noise spectra �from 1/� to
constant to �!� leads to more oscillations as detuning is made
more negative, i.e., as the admixture of charge decreases.
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