MAGNETISM

Electrical generation and detection of spin waves in a quantum Hall ferromagnet

Di S. Wei1, Toeno van der Sar2*, Seung Hwan Lee3, Kenji Watanabe3, Takashi Taniguchi3, Bertrand I. Halperin3, Amir Yakoby1,2,†

Spin waves are collective excitations of magnetic systems. An attractive setting for studying long-lived spin-wave physics is the quantum Hall (QH) ferromagnet, which forms spontaneously in clean two-dimensional electron systems at low temperature and in a perpendicular magnetic field. We used out-of-equilibrium occupation of QH edge channels in graphene to excite and detect spin waves in magnetically ordered QH states. Our experiments provide direct evidence for long-distance spin-wave propagation through different ferromagnetic phases in the $N = 0$ Landau level, as well as across the insulating canted antiferromagnetic phase. Our results enable experimental investigation of the fundamental magnetic properties of these exotic two-dimensional electron systems.

Quantum Hall (QH) ferromagnetism arises from the interaction of electrons in massively degenerate, quantized energy levels known as Landau levels (LLs) (E_n). When disorder is low enough for Coulomb interactions to manifest, the electrons in partially filled LLs spin-polarize spontaneously to minimize their exchange energy, with the single-particle Zeeman effect dictating their polarization axis (\pm). In graphene, these phenomena give rise to ferromagnetic phases when the $N = 0$ LL is at one-quarter and three-quarters filling ($\frac{1}{4}$–$\frac{3}{4}$). Such QH ferromagnets have an insulating topological bulk and spin-polarized edge states. Furthermore, a canted antiferromagnetic (CAF) state is believed to emerge at one-half filling, with a canting angle determined by the competing valley anisotropy and Zeeman energy ($gS\mu_B B$). Spin waves, also known as magnons, are the lowest-energy excitation in both the QH ferromagnet and the CAF state ($\frac{1}{2}$, $\frac{3}{4}$) and could provide crucial information about these topologically nontrivial magnetic states.

In our experimental setup, we generate magnons by creating an imbalance of chemical potential between two edge states of opposite spin that run along the boundary of a QH magnet. If this imbalance is smaller than the energy required for generating magnons in the QH magnet (and there are no thermal magnons already present in the system), scattering between these two edge states is forbidden because the change in angular momentum of a scattered electron cannot be absorbed by the system. Indeed, previous measurements have shown that oppositely spin-polarized edge channels do not equilibrate as long as the imbalance is small ($\frac{3}{8}$, $\frac{5}{8}$). However, we find that edge-channel equilibration commences when the imbalance exceeds the minimum energy required for exciting magnons in the QH ferromagnet. Because the magnetization of the QH ferromagnet is extremely dilute, there are negligible demagnetizing fields and the minimum energy to excite magnons is given by the Zeeman energy $E_Z = g_S\mu_B B$ ($\frac{11}{10}$), where g is the electron g-factor, μ_B is the Bohr magneton, and B is the external magnetic field. Although magnon generation does not directly affect the conductance of the system, the reverse process of magnon absorption by faraway edge states does, allowing us to detect the propagation of magnons electrically, in close analogy to the conventional detection of magnons in insulators via the inverse spin Hall effect ($\frac{17}{18}$–$\frac{19}{19}$).

To demonstrate spin-wave propagation, we begin with a dual-gated monolayer graphene device (device 1) where the central region can be tuned to a filling factor different from that of the adjacent regions (Fig. 1A). Connecting the two leads is a chiral edge state that carries spin-polarized electrons aligned with the magnetic field.

1John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
2Department of Physics, Harvard University, Cambridge, MA 02138, USA.
*National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.
*Present address: Kavli Institute of Nanoscience, Delft University of Technology, 2628CD Delft, Netherlands.
†Corresponding author. Email: yakoby@physics.harvard.edu

Fig. 1. Magnons in a quantum Hall ferromagnet.

(A to C) A chemical potential difference (μ) is applied between the left and right leads. Edge channels with high and low chemical potential are labeled “hot” and “cold,” respectively. Spin-up and spin-down polarization are denoted by the green and orange arrows, respectively. The central region is tuned to $\nu = 1$ and adjacent regions are tuned to $\nu = 2$. (A) The chemical potential difference between the spin-up and spin-down edge channel is less than the Zeeman energy (E_Z), and scattering is suppressed. (B) $\mu \geq E_Z$: Electrons have enough energy to flip their spins and transfer spin angular momentum (magnons) into the bulk (at the encircled minus sign). These magnons are absorbed at distant corners, causing electrons to flip from spin-up into spin-down channels. (C) $\mu \leq -E_Z$: Magnons are generated at the location denoted by the encircled plus sign. (D) Bulk spin polarization before and after magnon creation, conserving total spin angular momentum. (E) Optical micrograph of device 1; graphene is outlined in white. TG, top gate. (F) A dc voltage (V_{ac}) and a 50-μV ac excitation voltage (V_{ac}) are applied to the left contact, and the differential conductance ($d\sigma/dV$) is measured through the right contact ($B_z = 4$ T, $V_{ac} = -0.18$ V, $V_{bg} = 3$ V). Conductance is quantized to e^2/h until $|\mu| \geq E_Z$. (G) $d\sigma/dV$ as a function of bias and magnetic field. The blue dashed line is the Zeeman energy $E_Z = g_S\mu_B B$, calculated using the perpendicular magnetic field B_z; the black dashed line is the Zeeman energy $E_Z = g_S\mu_B B$ calculated using the total field B_T. Both the top gate (V_{tg}) and the back gate (V_{bg}) are swept to stay at $\nu = 1$ throughout the device from 7 T ($V_{tg} = 0.16$ V, $V_{bg} = 0.73$ V) to 5 T ($V_{tg} = 0.12$ V, $V_{bg} = 0.44$ V). The decrease in conductance from e^2/h evolves linearly with the magnetic field, coinciding with E_{Cz}. Left inset: The sample is fixed at a 45° angle to B_z. Right inset: A saturated color plot (from 0.98 to 1.02 e^2/h) of the region enclosed by the yellow box. All measurements are conducted in a cryostat with a base temperature of 20 mK.
field, which we call spin-up. We tune the central region to a three-quarters filled LL \((\nu = 1) \), whereas the outer regions are tuned to a nonmagnetic fully filled LL \((\nu = 2) \). We apply a source-drain voltage \(V_{\text{dc}} \) to induce a difference in chemical potential \(\mu = -eV_{\text{dc}} \) between the edge channels emerging from the two contacts, where \(e \) is the electron charge. Once \(|\mu| \geq E_Z \), an electron traveling in a high-energy (“hot”) spin-down edge state can relax into a low-energy (“cold”) spin-up edge state by emitting a magnon into the ferromagnetic bulk (Fig. 1, B and C). Because equilibration must occur close to the ferromagnetic bulk in order to launch magnons, the edge states must equilibrate over short length scales at localized “hot spots” where the hot and cold edges meet. This makes graphene an ideal platform to observe this phenomenon, because edge state equilibration in graphene can occur over length scales of \(<1 \mu m \) \((13, 20, 21) \) [see (22) for further discussion]. Because only spin-down angular momentum can be propagated into the spin-up bulk, magnon generation occurs at the location denoted by an encircled minus sign when \(\mu \geq E_Z \) (Fig. 1B) and at the location denoted by an encircled plus sign when \(\mu \leq -E_Z \) (Fig. 1C). These magnons propagate through the insulating QH ferromagnet and can be absorbed by the reverse process between other edge channels (Fig. 1, B and C), which causes a deviation in the conductance from a well-quantized \(v = 1 \) QH state.

When we measure the conductance of the graphene device (Fig. 1E; atomic force microscopy image in fig. S3) as a function of \(V_{\text{dc}} \), we find that the \(v = 1 \) QH ferromagnet remains precisely quantized at the expected value of \(e^2/h \), and then changes once the applied bias reaches the Zeeman threshold \((V_{\text{dc}} = \pm V_{\text{sz}} = \mp E_Z/e) \), as expected from our model (Fig. 1F). Interestingly, we find that thanks to contact doping \((22, 23)\) we can tune the entire device to \(v = 1 \) and find the same phenomenon of conductance deviation at the Zeeman threshold \((22)\) (fig. S4).

By tilting the external magnetic field with respect to the sample-plane normal axis, we verify that the change in conductance occurs when the applied chemical potential exceeds the bare Zeeman energy \(E_Z = g_i \mu_B B_T \) \((g = 2) \), which is given by the total field \(B_T \) (Fig. 1G; sample is tuned entirely to \(v = 1 \)). In contrast, previous transport studies of spin and valley excitations in graphene and GaAs have only found excitations related to the exchange energy gap \((2, 3, 24)\), which depends on the component of the field perpendicular to the sample plane \((B_z)\). Our tilted-field measurements therefore corroborate our magnon-based interpretation of the observed change in sample conductance. All further experiments described in this work are done at perpendicular field.

The conductance change at \(E_Z \) can either be positive or negative, depending on the number of magnons absorbed at each contact. To examine this, we use different sets of leads in the same device (Fig. 2A, device 2) to perform two-terminal conductance measurements. We start with leads \(L_2 \) and \(L_1 \) in Fig. 2B. We label the amount of redistributed chemical potential at each of the absorption sites \(\epsilon_i \), with \(i \) indexing the absorption site (note that \(\epsilon_i = 0 \) for \(-E_Z < \mu < +E_Z \), where \(\epsilon_i \) is proportional to the number of magnons absorbed at site \(i \). Absorption at \(\epsilon_1 \) and absorption at \(\epsilon_2 \) have opposite effects on the conductance, as magnon absorption transfers chemical potential from the outer edge to the inner edge. Therefore, for \(\mu > E_Z \), magnon absorption at \(\epsilon_1 \) decreases the particle current \((I_p = -I_\mu, \text{where } I \text{ is the charge current}) \), whereas magnon absorption at \(\epsilon_2 \) increases \(I_p \) (Fig. 2B). For \(\mu < -E_Z \), the hot and cold reservoirs are reversed, and we now consider the change to the negative particle current \(-I_p \). Although \(\epsilon_1 \) still decreases the particle current, \(I_p \) is now negative, and so \(\epsilon_1 \) actually increases the magnitude of the particle current \((\sim I_\mu)\); similarly, for \(\mu < -E_Z, \epsilon_2 \) decreases \(|I_p| \) (Fig. 2C).

We can quantify this using current conservation to formulate the differential conductance as a function of \(\epsilon_i \) and \(\mu \):

\[
\frac{dI}{dV} = \frac{dI_P}{dV} = \frac{1}{R_Q} \left(1 + \frac{\epsilon_2}{d\epsilon_1} \frac{d\epsilon_1}{d\mu} \right)
\]

where \(R_Q = h/e^2 \) is the resistance quantum, \(V = V_{\text{dc}} + V_{\text{sz}} \), and we neglect contact resistance [see (22) for a derivation that takes contact resistance into account]. We find that the conductance decreases at negative bias and increases at positive bias (Fig. 2D), indicating that \(\epsilon_1 > \epsilon_2 \) for both positive and negative bias. This implies that more magnons are absorbed at \(\epsilon_1 \) than at \(\epsilon_2 \). Because our contacts have all been fabricated identically, we conclude that this is because \(\epsilon_1 \) is closer to magnon generation than \(\epsilon_2 \) (for both positive and negative bias; Fig. 2, A and B). Using different sets

Fig. 2. Effects of relative magnon absorption on conductance. (A) Optical micrograph of device 2. Graphene is outlined in white. (B) Schematic of a two-terminal conductance measurement using leads \(L_2 \) and \(L_1 \) where hot and cold edges are colored red and blue, respectively, for both \(\mu \geq E_Z \) (left) and \(\mu \leq -E_Z \) (right), and the magnon generation site is labeled by the encircled plus or minus sign indicating positive or negative bias. \(\mu \geq E_Z \). Magnon absorption at \(\epsilon_1 \) transfers chemical potential from a forward-moving edge to a backward-moving edge, causing the particle current \((\mu = -e\alpha) \) to decrease. Conversely, magnon absorption at \(\epsilon_2 \) transfers chemical potential from a backward-moving edge to a forward-moving edge, increasing \(I_P \). \(\mu \leq -E_Z \). Magnon absorption at \(\epsilon_1 \) causes an increase in \(|\epsilon_2| \); absorption at \(\epsilon_2 \) causes a decrease in \(|\epsilon_1| \). (C) The effects of \(\epsilon_1 \) and \(\epsilon_2 \) at \(\mu \geq E_Z \) and \(\mu \leq -E_Z \) the current changes caused by \(\epsilon_1 \) are dominant and are circled in red. The purple arrows indicate an increase (up) or decrease (down) in the magnitude of the signed particle current. (D) Conductance from \(L_2 \) to \(L_1 \) \((g_{L2} = 2dL/dV = dI/dV) \) decreases at \(V_{\text{dc}} = -V_{\text{sz}} \) and increases at \(V_{\text{dc}} = V_{\text{sz}} \), indicating that \(\epsilon_1 \) has a larger effect than \(\epsilon_2 \) \((B = 8 T, V_{\text{sz}} = 4 V) \). See (22) for full circuit analysis. (E and F) Conductance from \(L_2 \) to \(L_1 \) \((g_{L2} = 2dL/dV) \) where the entire device is tuned to \(v = 1 \) \((V_{\text{sz}} = 4 V, TG_1 = 0 V \text{ is not shown}) \). At positive bias, \(\epsilon_2 > \epsilon_2 \), and at negative bias, \(\epsilon_1 > \epsilon_2 \), resulting in a conductance drop for both biases. (G and H) Conductance from \(L_2 \) to \(L_1 \) \((g_{L2}) \) where \(TG_1 \) is tuned to \(TG_2 = 1 \) \((TG_1 = -0.36 V) \), whereas the regions outside are set to \(V_{\text{sz}} = 2 \) \((V_{\text{sz}} = 6.5 V) \). At positive bias, \(\epsilon_1 > \epsilon_2 \), and at negative bias, \(\epsilon_2 > \epsilon_2 \), resulting in a conductance rise for both biases. See fig. S5 for a detailed analysis.
Fig. 3. Nonlocal voltage signal due to magnon absorption. Shown are the data from device 2. (A) Schematic circuit configuration for measuring a nonlocal voltage in device 2. The filling factor under TG1 (νTG1) is 1 for all measurements, whereas the filling factor under TG2 (νTG2) is swept from −2 to 2, and the rest of the device is kept at ν = 1 (Vsc = 4 V). The bottom panel highlights the magnetic properties of different cases of νTG2: nonmagnetic (NM), ferromagnetic (FM), or canted antiferromagnetic (CAF). (B) S NL (purple) superimposed onto δV dV/dV (green) as a function of Vsc when νTG2 = 1 (B = 8 T). The onset of S NL is slightly offset from the decrease in conductance, indicating that magnon generation needs to reach a threshold before being absorbed in distant contacts. (C) A pronounced S NL signal when νTG2 = 1 and νTG2 = −1 (see fig. S8 for similar measurements using TG1). Tuning TG2 to the nonmagnetic QH phases (νTG2 = 2 and νTG2 = −2), as well as the νTG2 = 0 CAF state, strongly suppresses S NL. There is a small finite background S NL when edge states pass through TG2, discussed in fig. S7B. Solid brown curve indicates where νTG2 = 0, 1, and 2 (fig. S7, C and D). (D) The spatial variation of the LLs at a ν = 1 / ν = −1 junction, with the expected valley and spin polarizations of each level labeled.

Thus far, we have established that we are able to generate and absorb magnons at current carrying contacts. If these chargeless excitations propagate through the insulating bulk, we also expect to see signatures of magnon propagation and absorption via nonlocal voltage measurements (dVNL/dV referred to as the nonlocal signal SNL), away from the source-drain current. To measure S NL, we use L4 and L5 in device 2 as source-drain contacts, and use contacts L6 and L7 as voltage probes (Fig. 3A). These contacts are separated from the source-drain contacts by a top gate (TG2), which we tune between νTG2 = −2 and νTG2 = 2, whereas all other regions are tuned to ν = 1. The conductance g between L4 and L5 drops at ±V EZ in accordance with our model (Fig. 3B), whereas magnon generation is largely unaffected by TG2 (Fig. S7A). At νTG2 = 1, we measure a change in SNL at ±V EZ owing to the relative absorption at each magnon absorption site (εi).

The sign of SNL indicates that there is more magnon absorption at sites closer to where magnon generation occurs. Through current conservation (22), we find that the measured differential voltage (unitless) is

$$\frac{dV_{NL}}{dV} = \left(\frac{d\epsilon_i}{d\mu} + \frac{d\epsilon_i}{d\mu}\right)$$

The site labeled by εi is closer to magnon generation than εj for both negative and positive bias, so dεi > dεj. However, the differential change in voltage (dεi/dμ) is negative for Vsc ≥ V EZ and positive for Vsc ≤ −V EZ, corresponding to an overall negative value for S NL at Vsc ≥ V EZ and a positive value at Vsc ≤ −V EZ (Fig. 3C). The device geometry used for our nonlocal measurements allows us to tune TG2 away from νTG2 = 1, and thereby examine magnon transmission through different filling factors. We observe that when νTG2 = −1, the signal SNL is almost identical to when νTG2 = 1 (Fig. 3C and fig. S8). This signal arises in the absence of any charge leakage across the νTG2 = −1 region (fig. S9), so that changes in SNL can be attributed to magnon transport through the νTG2 = −1 ferromagnet. This suggests that there is neither spin nor valley mismatch between the ferromagnetic states on either side of the boundary. We therefore propose an ordering of the LLs that does not require a spin or valley flip for magnons to travel across the interface between νBG = 1 and νBG = −1 (Fig. 3D; see (22) for a theoretical discussion).

In addition, we unexpectedly find that SNL is suppressed at ±V EZ when νTG2 = 0. For nonmagnetic regions such as νTG2 = 2, it is expected that magnons will be blocked from passing through, as experimentally confirmed in Fig. 3C (the nonlocal signal occurring at the transition between ν = 1 and ν = 2 is explained in fig. S7E). However, ν = 0 is purportedly a CAF, which is theoretically capable of hosting even zero-energy magnons (22). It appears that the probability for an incident magnon to be transmitted across the junction between the ν = 0 and ν = 1 regions is very small for energies close to E⊥. This may be caused by, in part, the mismatch in propagation velocities in the two phases, or a barrier due to the complex nature of the interface region. Close to the boundary with a ν = 1 phase, the ground state of the ν = 0 phase may not have canted spins but may instead be in an aligned antiferromagnetic state, where spins are parallel to the magnetic field on one sublattice and antiparallel on the other. Eventually, far from the boundary, we may expect the local spin arrangement to rotate into the CAF orientation (Fig. 4B).

In the transition region, the minimum magnon energy will be larger than E⊥, thanks to effects of the valley-dependent interaction terms (10), which were initially responsible for the antiferromagnet arrangement to be favored over the ferromagnetic arrangement. To cross from the ν = 1 region to the CAF region, a magnon with energy close to E⊥ would have to tunnel through the barrier region, and we would expect the transmission rate to be low. If the magnons have enough energy to overcome this barrier, they should be able to more easily enter the CAF region. Figure 4C shows that we can experimentally exceed this barrier, where we see nonlocal signals at higher |Vsc| with signs in agreement with our magnon model. The onset of this magnon...
signal is unaffected by any charge transport across the $V_{\text{BG}} = 0$ region (fig. S10). Closely examining the signal at $V_{\text{BG}} = 0$, we see signals commencing at $\pm V_{\text{EZE}}$, which we attribute to tunneling events across this barrier between $V_{\text{BG}} = 1$ and $V_{\text{BG}} = 0$ (Fig. 4D).

Note that all nonlocal signals (occurring at $V_{\text{TG1}} = -1$, 0, and 1) appear only in a finite band of V_{de}. This suppression of the differential voltage signal indicates that magnon generation is suppressed, or alternatively, that the differently spaced contacts begin to see identical amounts of magnon absorption once the system has reached a certain magnon density threshold. We further speculate that this cutoff could be related to the magnon bandwidth, but we leave this to a future investigation.

The experiments presented here introduce a method of using magnons to probe the SU(4) spin and valley anisotropies of graphene QH systems, which can be used to probe highly correlated states such as the fractional QH regime (26) or the quantum spin Hall phase of monolayer graphene (9). Owing to the theoretical prediction for spin superfluidity in the CAF state (12), this study paves the way for exploring and realizing dissipationless spin waves in a Bose-Einstein condensate (BEC) of magnons. Such condensates should result in a coherent precession of the spins in the QH magnet, which may be probed through emitted microwave radiation. Furthermore, coherent spin waves associated with a BEC may be able to propagate long distances with negligible dissipation measurements, which could be tested by careful length dependence measurements.

REFERENCES AND NOTES

15. C. Kittel, Phys. Rev. 73, 135–161 (1948).
22. See supplementary materials.
Magnons propagating in graphene

At sufficiently low temperatures, a two-dimensional electron system placed in an external magnetic field can exhibit the so-called quantum Hall effect. In this regime, a variety of magnetic phases may occur, depending on the electron density and other factors. Wei et al. studied the properties of these exotic magnetic phases in graphene. They generated magnons—the excitations of an ordered magnetic system—that were then absorbed by the sample, leaving a mark on its electrical conductance. The magnons were able to propagate across long distances through various magnetic phases in the bulk graphene.

Science, this issue p. 229