A cantilever torque magnetometry method for the measurement of Hall conductivity of highly resistive samples

Cite as: Rev. Sci. Instrum. 91, 045001 (2020); https://doi.org/10.1063/1.5143451
Submitted: 23 December 2019. Accepted: 19 March 2020. Published Online: 06 April 2020

Samuel Mumford, Tiffany Paul, Seung Hwan Lee, Amir Yacoby, and Aharon Kapitulnik

ARTICLES YOU MAY BE INTERESTED IN

Direct approach to determine the size setting error and size resolution of an optical particle counter
Review of Scientific Instruments 91, 045105 (2020); https://doi.org/10.1063/1.5142907

Developments of real-time emittance monitors
Review of Scientific Instruments 91, 043303 (2020); https://doi.org/10.1063/1.5128583

Development of a high resolution x-ray inspection system using a carbon nanotube based miniature x-ray tube
Review of Scientific Instruments 91, 043703 (2020); https://doi.org/10.1063/5.0003229
A cantilever torque magnetometry method for the measurement of Hall conductivity of highly resistive samples

Cite as: Rev. Sci. Instrum. 91, 045001 (2020); doi: 10.1063/1.5143451
Submitted: 23 December 2019 • Accepted: 19 March 2020 • Published Online: 6 April 2020

Samuel Mumford, Tiffany Paul, Seung Hwan Lee, Amir Yacoby, and Aharon Kapitulnik

AFFILIATIONS
1 Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
2 Department of Physics, Stanford University, Stanford, California 94305, USA
3 Department of Applied Physics, Stanford University, Stanford, California 94305, USA
4 Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

A) Author to whom correspondence should be addressed: smumfor2@stanford.edu

ABSTRACT
We present the first measurements of Hall conductivity utilizing a torque magnetometry method. A Corbino disk exhibits a magnetic dipole moment proportional to Hall conductivity when voltage is applied across a test material. This magnetic dipole moment can be measured through torque magnetometry. The symmetry of this contactless technique allows for the measurement of Hall conductivity in previously inaccessible materials. Finally, we calculate a low-temperature noise bound, demonstrate the lack of systematic errors, and measure the Hall conductivity of sputtered indium tin oxide.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5143451

I. INTRODUCTION
Measurements of transverse transport properties such as the Hall effect, Nernst effect, and transverse thermal conductivity have become of great importance in understanding modern quantum materials. However, such measurements are often made difficult, or even impossible, due to the contamination of longitudinal transport effects. For example, in a standard Hall bar measurement of the Hall effect, the transverse voltage \(V_y(H) \) is measured in response to the application of a longitudinal current \(I_x \) in the presence of a perpendicular magnetic field \(H \hat{Z} \) using two contacts on opposite sides of the sample [see Fig. 1(a)]. A common procedure to eliminate contributions from the longitudinal magnetoresistance due to contact misalignment invokes the odd symmetry of the effect to find the Hall resistance \(\rho_{xy} = [V_y(H) - V_y(-H)]/2I_x \). (Here, we use the 2D notation where thickness is fixed.) However, this simple procedure often fails when \(\rho_{xx} \gg \rho_{xy} \), such as the variable range hopping (VRH) regime of disordered insulators \(^{1,2}\) or on the insulating side of superconductor–insulator transition.\(^{3-7}\) Only a handful of Hall measurements were done in the VRH regime (see Refs. 8 and 9) despite detailed theories\(^{10,11}\) and, in general, measurements were restricted to the vicinity of the metal–insulator transition (MIT). The issue is complicated further if one is interested in the transverse conductivity \(\sigma_{xy} \), which can be calculated from the resistivity tensor, but with uncontrolled error-bars if \(\rho_{xx} \) diverges. A direct measurement of \(\sigma_{xy} \) is needed to probe a variety of topological states of matter in the bulk material-system where edge states may dominate the transport. For example, standard transport approaches to measure the quantum Hall effect (QHE) in two-dimensional electron gas (2DEG) interact directly with the edge states, with no ability to explore the existence of Hall currents in the bulk of the sample.\(^{12}\) Indeed, the original theoretical approach to explain the QHE by Laughlin\(^{13}\) used a closed metallic ribbon configuration, equivalent to a Corbino disk\(^{14}\) to demonstrate the effect.

In this paper, we demonstrate a new method for measuring \(\sigma_{xy} \) in a Corbino disk configuration, where the induced Hall currents in the disk create a magnetic dipole moment that is measured by torque magnetometry. A circularly symmetric Corbino disk is shown in Fig. 1(b). Fabricated at the end of a cantilever, it forms the basis of this \(\sigma_{xy} \) measurement technique.\(^{15}\) Applying a voltage \(V \) between...
the inner and outer contacts creates a radial electric field \(E_r \), which
induces a circulating Hall current with a current density \(j_{\phi}(r) \). This
Hall current creates a magnetic dipole moment \(\mu \) parallel to the ring
normal, which can be directly evaluated by

\[
\mu = \int j_{\phi}(r) r^2 dr = \int \sigma_{xy} E_r r^2 dr \equiv \sigma_{xy} GV,
\]

where \(G \) is a geometrical factor. For concentric rings, one obtains

\[
\mu = \frac{\pi (r_i^2 - r_o^2)}{2 \ln(r_i/r_o)} V,
\]

where \(r_i \) and \(r_o \) are the inner and outer radii of the test mate-
rial, respectively. While real fabricated devices may deviate slightly
from concentric rings, such errors are small on the scale of the full
Corbino disk and an image of the device can be used to numerically
correct that error.

The magnetic dipole moment is then measured by means of
the applied voltage, magnetic field, and \(\sigma_{xy} \). For high-
precision contactless measurements, the dipole moment is mea-
ured without placing elements in series with the Hall current, and
the torque measurement is insensitive to higher order magnetic
moments caused by misalignment. The magnetic dipole moment
of the full Corbino disk is also relatively insensitive to local disor-
der sources. Moreover, as the Corbino disk torque must be linear
in \(V \) and even in \(B \), one may separate the signal due to the Hall
effect from other effects due to cantilever heating or longitudinal
current by signal symmetry. Additionally, while not discussed in the
present manuscript, this method is easily generalized for the study
of Nernst currents that are excited when a temperature gradient is
applied between the inner and outer contacts. This temperature gra-
dient can be easily realized using the same laser that is used to drive
the cantilever discussed below.

II. METHODS

A. Measurement concept

Cantilever torque magnetometry utilizes a high-Q resonator
to detect the interaction between a magnetic dipole and an exter-
nal magnetic field. The angular response \(\theta \) of a cantilever with
moment of inertia \(I \), resonant frequency \(\omega_0 \), and quality
factor \(Q \) subject to an external torque \(\tau \) may be approximated as a
damped harmonic oscillator by the following equation:

\[
\ddot{\theta} + \frac{A}{Q} \omega_0 \dot{\theta} + A \omega_0^2 \theta = \tau.
\]

An external magnetic field \(\vec{B} \) exerts a torque

\[
\vec{\tau} = \vec{\mu} \times \vec{B}.
\]

If the dipole moment and magnetic field are aligned in the cantilever
equilibrium position, an effective detuning torque

\[
\tau_D = \mu B \sin(\theta) \approx \mu B \theta
\]

results as the cantilever oscillates. Inserting \(\tau_D \) into Eq. (3) shifts the
resonant frequency by

\[
A \omega_0^2 \theta \rightarrow A \omega_0^2 \theta - \mu B \theta
\]

Using Eq. (2), the shift in the resonant frequency can be related to
the applied voltage, magnetic field, and \(\sigma_{xy} \) by

\[
\delta \omega_0 = \frac{GV}{8 \pi^2 A_f} \mu B \sigma_{xy}.
\]

Measurement of changes in \(f_0 \) of a patterned cantilever with voltage
therefore probes \(\sigma_{xy} \) without polluting terms from \(\rho_{xx} \).

B. Device fabrication

Corbino disks were patterned on high-Q single-crystal silicon
cantilevers, as shown in Fig. 2. Fabrication was performed using
photolithography as all features are larger than 15 \(\mu m \). Fabrication
began with a silicon on insulator (SOI) wafer with a 450 \(\mu m \) handle
layer, a 4 \(\mu m \) buried oxide layer, and a 2 \(\mu m \) or 3 \(\mu m \) device layer of
(001) Si depending on the design. A CVD SiO\(_2\) layer was first
deposited onto the handle side, and this oxide was plasma etched
in an array of square windows. Next, 25 nm of Ti–Pt was patterned
in the shape of the cantilever on the device side. This conductive
layer serves as a ground plane and separates the Corbino disk volt-
ages from the underlying Si. A 40 nm thick barrier of ALD HfO\(_2\) and
CVD nitride was then grown on top of the Pt to electrically separate
the grounding plane from the subsequently deposited layers. On the

FIG. 1 (a) The typical Hall bar consists of four contacts and a drive current \(I \). A
symmetry-breaking magnetic field \(B \) allows non-diagonal terms in the resistivity
tensor \(\rho \). Correspondingly, there is a Hall voltage \(V_H \propto \rho_{xy} I \) across contacts
separated \(\perp \) to \(I \), as well as the longitudinal voltage \(V_L \propto \rho_{xx} I \). (b) Corbino disk
configuration used for \(\sigma_{xy} \) measurements. Here, the Au metallic contacts serve as
the equipotential rings. (c) Side view of torque magnetometry.
Our results below. As the misalignment signal is odd in the magnetic field, it can be separated from the Hall moment signal, which is even in the magnetic field. Such a process is analogous to flipping the sign of B and looking for an odd component in V_δ in a Hall bar, but in this case, the polluting linear signal becomes smaller as ρ_{xx} increases. Future devices can be fabricated using e-beam lithography to render this contribution negligible.

C. Interferometric resonant frequency detection

The resonant frequency of the cantilever is tracked with a fiber interferometer. The output of a 1310 nm fiber-coupled laser diode is first fed through a 90-10 splitter. The majority of the laser power goes to a reference photodiode, and the remaining 10% of the laser power is connected to a cleaved fiber optic cable. The cleaved laser end is then aligned over a cantilever to form an interferometer, as shown in Fig. 3. The output from this interferometer is converted into a voltage by a photodiode and computer processed after analog-to-digital conversion. The interferometer voltage $V(t)$ for the laser wavelength λ, peak to peak voltage V_{pp}, and fiber–cantilever distance Δz is

$$V(t) = \frac{2\pi V_{pp}\Delta z(t)}{\lambda} \sin\left(\frac{4\pi \Delta z}{\lambda}\right) \approx \Delta z(t). \quad (8)$$

The fiber interferometer thus provides the means to precisely track cantilever motion.

The cantilever resonant frequency is measured by observing the response to a radiation pressure drive. A 1550 nm fiber coupled laser is connected to the cleaved fiber used for interferometry. The power of this laser is reflected off of a Pt pad near the end of the cantilever. This laser power is modulated with a frequency sweeping voltage over a frequency width δf and time t_{sw},

$$V_{sw} = V_0 \sin\left[2\pi \left(f_0 - \frac{\delta f}{2} + \frac{\delta ft_{sw}}{2t_{sw}}\right)\right]. \quad (9)$$

FIG. 2. (a) Schematic drawing of a cantilever patterned with a Corbino disk in the planar coaxial design. An insulating barrier (orange) separates the Pt inner contact (black) and the Pt outer ring contact (gray). The test material (red) is deposited in a circle connecting the voltage contacts, and the underlying Si is shown in pink. (b) A planar coaxial Corbino disk cantilever with ITO as the test material.

FIG. 3. A cleaved fiber above a cantilever forming an interferometer. The two interfering light sources are the reflected light from the fiber end and the cantilever surface. The fiber was aligned with a three-axis stage and a red laser before being epoxied to the cantilever wafer. A separate pad of Pt was patterned on the end of the cantilever for alignment.
to create a sweeping radiation pressure drive. The sweeping drive voltage is also connected to a reference port in the analog-to-digital converter to fit for the cantilever response function, as shown in Fig. 4.

The shape of the cantilever response function to the applied laser drive is fit for \(\omega_0 \) and \(Q \), and the amplitude of the response is used to calculate \(A \), as shown in Appendix B. Note that such a calculation of \(A \) assumes that all laser light is normal to the cantilever surface and that it is reflected. As a result, all calculations of \(A \) are lower bounds, and the corresponding calculations of torques are similarly lower bounds. With improvements to the electronics, \(A \) could be calculated without this assumption using the undriven cantilever motion through equipartition.

As shown in Appendix A, the minimum detectable shift in the resonant frequency for a cantilever with the length \(L \) and vibrational temperature \(T \) driven for time \(t_{\text{sweep}} \) is

\[
\frac{\Delta \omega_0}{\omega_0} = \frac{2L}{\lambda} \sqrt{\frac{2k_bT \pi}{\Delta \omega_0 t_{\text{sweep}} Q}}.
\]

which by Eqs. (2) and (6) translates to a minimum detectable \(\sigma_{xy} \) of

\[
\delta \sigma_{xy} = \frac{4L\ln(t_{s}/\tau_1)}{\lambda ((r_s^2 - r_l^2) V B) \sqrt{2k_bT/\pi t_{\text{sweep}} Q}}.
\]

For this cantilever design, a dilution refrigerator temperature of 0.1 K, a 5 T magnet, and 0.1 V applied, the minimum detectable \(\sigma_{xy} \) \(\sim 10^{-11} \, \Omega^{-1} \). Such uncertainty improves upon Hall bar measurements by a factor of \(>10^6 \) for insulating samples extrapolated to \(T \rightarrow 0 \). Note that as sample heating scales as \(V^2/\rho \), the minimum observable \(\sigma_{xy} \) scales as \(1/\sqrt{\rho} \) and decreases dramatically for insulators at low temperature.

III. EXPERIMENTAL RESULTS

A. Torque detection test: CGT and RuCl

A flake of Cr_2Ge_2Te_6 (CGT) was placed on a single crystal Si cantilever with patterned Pt wires, as shown in Fig. 5. CGT flakes were placed on the released cantilevers using thin gold wires and glued using Stycast 1266 epoxy. CGT is studied as a van der Waals ferromagnet with a bulk transition temperature \(T_c \) of \(\sim 65 \, K \). Here, CGT is used as a reference measurement for sensing \(\delta f_0 \) and serves as a test of the patterned cantilever design and data taking procedure.

A clear magnetic response in \(f_0 \) is observed both as a function of temperature and magnetic field. As seen in Fig. 6(a), there is a quadratic response in \(f_0(B) \) below \(T_c \). A resistive heater was then used to profile the magnetic response across the transition temperature, as seen in Fig. 6(b). The clear emergence of the magnetic response at the transition temperature of 63.77 \(\pm 0.1 \, K \) demonstrates both temperature control in the system and that in the observed \(\delta f_0(B) \) can be attributed to the CGT instead of systematic effects or magnetization of other cantilever components. This procedure was repeated to find a kink in the magnetic susceptibility of RuCl at 14 K, as seen in Fig. 6(c).

Finally, using the observed \(A = 1.6 \times 10^{-18} \, \text{kg m}^2 \) for the RuCl flake cantilever and uncertainty in \(f_0 \) with one hour of averaging time of 0.1 mHz, the minimum detectable dipole moment is \(4 \times 10^{10} \mu_B \) at \(B = 1 \, T \). Such a precision represents a modest improvement in sensitivity over other resonant torque magnetometry approaches and demonstrates that \(f_0 \) may be tracked interferometrically on cantilevers with additional patterned layers.

FIG. 4. (a) Real time response of a 3 \(\mu \text{m} \) thick Si cantilever to a sweep drive. The amplitude of driving power modulation was 50 \(\mu \text{W} \). Each drive and fit was performed over 20 s, so subsequent drives would be independent with a cantilever response time of \(\sim 2 \) s. (b) Power spectral density of the cantilever response seen in part (a). Response is fit to a damped harmonic oscillator equation finding \(f_0 \) of 14 316.9 Hz and a Q of 230 00.

FIG. 5. A single crystal silicon cantilever with an attached CGT flake on the interferometric aligning pad.
FIG. 6. (a) The magnetic response of the cantilever f_0 due to a CGT flake at the probe base temperature of 5 K. Note the small magnetic field used, remaining below the coercive field of CGT due to the large amplitude of $\delta f_0(B)$. (b) Tracking the resonant frequency of CGT across the transition temperature as a function of magnetic field. Note that above T_c, the resonant frequency is magnetic field-independent and a clear magnetic response appears at the transition temperature. (c) Magnetic field dependent shift in the resonant frequency of a cantilever with a RuCl$_3$ flake. Note the kink in magnetic susceptibility at 14 \pm 0.1 K.

B. Systematics tests: Conductive Pt device

Dummy devices that should not exhibit a Hall signal were investigated to check for systematic errors. An initial dummy device consisted of a Corbino disk with Pt as the test material patterned on a 3 μm thick single-crystal Si cantilever, as shown in Fig. 7(a). Note that this design is identical to the later cantilevers, which exhibit the Hall signal except for the Pt used as the test material. The resistance of the Pt wires was 110 Ω, and alternating voltages $V = \pm 100$ mV were applied across the device to look for an odd in V shift and even in B shift in f_0. This approach to finding δf_0 eliminates shifts in the resonant frequency from V-independent bulk magnetization and V^2 Joule heating. There is no evidence of a quadratic dependence in $\delta f_0(B)$, as seen in Fig. 7(c). The Pt dummy cantilever thus shows no evidence of a Hall-like δf_0.

FIG. 7. (a) A dummy device with Pt wires used to look for systematic errors and noise bounds. (b) A Corbino disk cantilever with Ge as a test material. Note the pairs of wires for the inner and outer contacts to allow four wire measurements of the voltage across the disk. (c) Even component of $\delta f_0(B)$ with the magnetic field for the Pt dummy cantilever. A quadratic fit for $\delta f_0(B)$ is plotted, with a fit coefficient of -5 ± 6 μHz/T2. This fit coefficient is within 1σ of 0, and thus, there is no evidence of a Hall-like signal in the Pt dummy device.
C. Systematics tests: Insulating Ge device

Full Corbino disk cantilevers with evaporated amorphous Ge as a test material were also fabricated [Fig. 7b]. The insulating Ge serves both as a test for spurious δf_0 with voltage applied across the ring and as a means to verify that the full fabrication procedure did not create unintended electrical connections. The 3 μm thick Ge devices are both electrically and mechanically viable, with resistances of >20 MΩ and Q \sim 250 000. Once more, there is no evidence of a Hall-like shift in f_0 at room temperature, finding $\delta f_0 = 88 \pm 91$ kHz in the zero-field and $\delta f_0 = 30 \pm 80$ kHz above a 0.3 T static magnet.

In conclusion, the dummy device tests demonstrate that design flaws creating Hall-like δf_0 have been eliminated. The Hall signal therefore may be distinguished by a voltage and magnetic field behavior from other shifts in f_0 in patterned Si cantilevers with Corbino disks.

D. Measurements of ITO Corbino disk

Corbino cantilevers with indium tin oxide (ITO) as a sample material were fabricated for first measurements of the Hall signal. ITO was chosen as an example of a disordered itinerant system, which can be tuned through a metal-insulator transition (MIT) by changing the tin and oxygen content. Here, we sputtered 50 nm of ITO with resistivity 3.5×10^{-7} Ω cm. Such ITO should exhibit σ_{xy} $> 1 \times 10^{-7}$ Ω^{-1} at 5 T. Based on the observed carrier density in this system, such ITO should be in the vicinity of the MIT with $k_F l \lesssim 1$. With typical carrier density for this material, it is expected that ρ_{xy}/ρ_{xx} $\sim 10^{-4}$, which is on the borderline of standard methods of Hall effect detection.\(^\text{23}\)

Cantilevers with ITO Corbino disks were tested to verify that a Hall signal can be seen. In an effort to improve future torque sensitivity, thinner 2 μm thick planar coaxial cantilevers were fabricated, as shown in Fig. 2. Figure 8 shows $\delta f_0(B)$ of an ITO Corbino disk cantilever in two data taking runs at 4.2 K. A linear component to $\delta f_0(B)$ caused by layer misalignment is clearly seen. The linear component is consistent with an alignment error of ~ 0.1 μm and $A = 5 \times 10^{-18}$ kg m2 on cooldown 2. After fitting to a second order polynomial and subtracting the linear and zero-field components, the Hall signal of the ITO can clearly be observed as a quadratic dependence in $\delta f_0(B)$ in Fig. 9. The quadratic fit coefficient is 30.7 ± 1.1 kHz/T2. A second ITO cantilever was also tested. Using Eq. (7), at 5 T, the Hall conductivities of each cantilever are $(2.0 \pm 0.1) \times 10^{-7}$ Ω^{-1} and $(1.8 \pm 0.3) \times 10^{-7}$ Ω^{-1}, respectively. Converting back to resistivities, $\rho_{xy} \sim 0.1 \Omega$ or 5×10^{-2} Ω cm in 3D. This consistent result for σ_{xy} across different cantilevers, cooldowns, and data taking procedures is in agreement with the previous measurements of sputtered ITO and verifies that the observed quadratic dependence in $\delta f_0(B)$ is caused by the ITO Corbino disk. The small ratio of ρ_{xy}/ρ_{xx} and the ability to measure $\sigma_{xy} \sim 10^{-8}$ Ω^{-1} also demonstrate the effectiveness of this technique.

IV. SUMMARY

In summary, Corbino disk torque magnetometry is a new viable method for precisely measuring σ_{xy} in insulators. First, the initial challenge of fabricating high-Q cantilevers with patterned Corbino disks and contacts has been completed. The resonant frequency of such devices can be measured with a fractional uncertainty of $\sim 10^{-9}$ after overnight averaging. This precision places current measurements within a factor of 10 of the theoretical noise floor for our cantilevers, likely due to electronics noise and the lack of special shielding. The Corbino disk cantilevers have also been tested for errors in fabrication, data collection procedures, and analysis protocols. These tests allowed for the elimination of systematic errors and spurious signals when applying the current and voltage across the disk. The Corbino disk cantilevers have also been used to measure σ_{xy} of sputtered ITO with a nominal resistivity of $\rho_{xx} \sim 3.5 \times 10^{-5}$ Ω cm. Such a measurement demonstrates the ability to detect the Hall effect in samples where $\rho_{xy}/\rho_{xx} \sim 10^{-3}$, which is generally difficult to measure using standard techniques. Finally, even without experimental improvements, this new apparatus can improve upon measurements of σ_{xy} independent of ρ_{xx} as $T \to 0$ by a factor of $>10^3$.\(^\text{19}\)
ACKNOWLEDGMENTS

This work was funded by the Army Research Office (Grant No. W911NF1710588) and the Gordon and Betty Moore Foundation through the Emergent Phenomena in Quantum Systems (EPiQS) Initiative (Grant No. GBMF4529). This work was also funded, in part, by a QuantEmX grant from ICAM and the Gordon and Betty Moore Foundation through Grant No. GBMF5305 to Seung Hwan Lee.

APPENDIX A: THEORETICAL NOISE FLOOR CALCULATION

For a cantilever response function \(R(\omega, \omega_0) \) to an applied torque \(\tau_{app} \), the observed change in cantilever oscillation when the resonant frequency shifts by \(\Delta \omega_0 \) is

\[
\Delta \theta_{sig}(\omega) = \tau_{app}(\omega) \frac{dR}{d\omega_0} \Delta \omega_0.
\]

As seen in Fig. 4(a), \(\tau_{app} \) is limited by the interferometer wavelength \(\lambda \). For a cantilever of length \(L \), the maximum angle of deflection over time \(t_{samp} \) is

\[
\Delta \theta_{max} = \lambda/2L = \tau_{max}(\omega) R(\omega) 2\pi/t_{samp}.
\]

The largest possible signal for a single-frequency drive, therefore, is

\[
\Delta \theta_{sig}(\omega) = \frac{\lambda t_{samp}}{2L} \frac{dR}{d\omega_0} \frac{1}{R(\omega)} \Delta \omega_0.
\]

The fundamental experimental noise source is thermal vibrations. By equipartition \(k_B T = A(\bar{\theta}(t)) \) or assuming a white noise thermal drive \(\bar{\theta}_{therm} \),

\[
\langle \theta^2(t) \rangle = \bar{\theta}_{therm}^2 t_{samp} \int R^2(\omega) d\omega = \frac{k_B T}{A}.
\]

Hence, with

\[
\bar{\theta}_{therm}(\omega) = \sqrt{\frac{2k_B TA\omega_0 t_{samp}}{\pi Q}},
\]

the noise response is

\[
\Delta \theta(\omega) = \bar{\theta}_{therm}(\omega) R(\omega, \omega_0, A, Q).
\]

Setting the signal to noise ratio to 1, the minimum detectable frequency shift is

\[
\Delta \omega_0 = \frac{4L}{t_{samp}} \sqrt{2\pi k_B TA\omega_0} \min \left(\left| \frac{dR}{d\omega_0} \right|^{-1} R^2(\omega) \right)
\]

or

\[
\Delta \omega_0 = \frac{2L}{\lambda} \sqrt{\frac{2k_B T \pi}{A \omega_0 t_{samp} Q}}.
\]

This unitless noise bound has a simple physical explanation. Using that \(1/2L \) is the maximum angle of the driven cantilever, that \(\omega_0 t_{samp}/2\pi \) is averaging time counted in a number of oscillations, and that narrower resonances will have less uncertain \(\omega_0 \), the noise bound is truly

\[
\frac{\Delta \omega}{\omega_0} = \sqrt{\frac{\text{Thermal Energy}}{\text{Driven Energy} \times \text{Time in Oscillations} \times Q}}.
\]

Finally, using Eqs. (6) and (2),

\[
\delta \sigma_\theta = \frac{4L \ln(r_{th}/r)}{\lambda (r_{th} - r)^2} \sqrt{2k_B TA\omega_0 \pi t_{samp} Q}
\]

The theoretical uncertainty bound can be compared to the present dummy cantilever data. Calculating \(A \) by observing the response magnitude to a known drive and using the vibrational temperature from equipartition along with Eq. (10), the best possible fractional uncertainty for such an experiment at 4.2 K should be \(\sim 10^{-10} \). The fractional uncertainty without careful vibration isolation and with high electronics noise is currently \(\sim 10^{-8} \) after overnight averaging.

APPENDIX B: FITTING FOR \(A, \omega_0, \) AND \(Q \)

Fitting begins by Fourier transforming Eq. (3) to find

\[
\theta(\omega) = \frac{1}{A \omega_0^2} \left(\frac{\omega_0^2 - \omega^2}{\omega_0^2} \right) + \frac{1}{\omega_0 Q} \tau(\omega).
\]

There is a small delay between the drive laser and the reference voltage controlling the laser, which makes the phase information unreliable. We correspondingly measure a power spectral density (PSD) of \(\theta(\omega) \) and \(\tau(\omega) \). This yields

\[
\text{PSD}^\tau(\omega) = \frac{1}{(A \omega_0^2)^2} \left(\frac{\omega_0^2 - \omega^2}{\omega_0^2} \right)^2 + \left(\frac{\omega}{\omega_0 Q} \right)^2.
\]

The observed cantilever response voltage \(V_{res} \) and reference drive voltage \(V_{ref} \) must be converted into \(\theta \) and \(\tau \) measurements. Assuming that all light is reflected, the force from the laser at power \(P_1 \) is \(2P_1/c \) and is applied at distance \(l \) along the cantilever. For the voltage control of the driving laser, \(V_{max} = 5 \text{ V} \) translates to \(P_{max} = 2 \text{ mW} \). The laser torque in terms of the known drive voltage \(V_{ref} \), therefore, is

\[
\tau = \frac{2P_{max} l}{V_{max} c} \cdot V_{ref}.
\]

Additionally, using Eq. (8) and declaring \(\theta_0 = 4\pi \Delta z_0 / \lambda \),

\[
\theta = \left(\frac{\lambda}{2\pi V_{pp} \sin(\theta_0)} \right) V_{ref}.
\]

Note that \(\theta_0 \) is known through the mean value of \(V_{ref} \) during one drive and fit procedure.

Plugging into Eq. (B2),

\[
\text{PSD}(V_{ref}) = \left[\frac{4\pi V_{pp} P_{max} l^2}{V_{max} c \Lambda} \right]^2 \left(\frac{1}{A \omega_0^2} \right)^2 \left(\frac{\omega_0^2 - \omega^2}{\omega_0^2} \right)^2 + \left(\frac{\omega}{\omega_0 Q} \right)^2.
\]

Note that when fitting is performed, a simpler

\[
\text{PSD}(V_{ref}) = \frac{Z}{Q^2} \left(\frac{\omega_0^2 - \omega^2}{\omega_0^2} \right)^2 + \left(\frac{\omega}{\omega_0 Q} \right)^2
\]

is used. Here, \(Z \) is roughly the ratio of the largest value of PSD\((V_{ref}) \) to the mean value of PSD\((V_{ref}) \). Finally, \(Z \) can be inverted to find \(A \), while \(\omega_0 \) and \(Q \) fit parameters. As an example, the \(A \) value of
5 × 10⁻¹⁸ kg m² used to analyze the ITO data in the final cooldown was found using $Z = 0.097$, $V_{pp} = 0.220$ V centered on $V = 0.185$ V, DC level for the fit of 0.09 V, $P_{\text{max}} = 0.5$ mW due to an attenuator, and $l = 550 \mu$m.

REFERENCES